Behavioural model uncertainty in estimation of structural oligopoly models
by Eric Eisenstat
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 4, No. 3, 2013

Abstract: The focus of this paper is on developing a methodology for dealing with behavioural model uncertainty in structural oligopoly models. It is well recognised that being an essential part of the identification strategy, the particular choice of a behavioural model embodies a highly influential, yet largely arbitrary, set of assumptions in the structural framework. The methods developed here are founded in Bayesian model averaging techniques and provide a practically and conceptually desirable way of accommodating behavioural model uncertainty in structural estimation. Moreover, a substantial feature of this approach is that it yields straightforward model comparison through the model posterior distribution. These methods are applied to estimate the parameters of the industry demand curve and firms' cost functions in oligopoly markets (e.g., marginal costs, markups, etc.). Three models of oligopoly behaviour are considered: one non-cooperative and two variations of cooperative with unobserved demand shocks. The specific industry analysed is the 1800s railroad cartel, commonly known as the Joint Executive Committee, which is widely familiar to industrial organisations economists. The results indicate that the algorithm performs quite well in correctly identifying cooperative behaviour, in additional to offering a clear view of the way in which model averaging resolves conflicts in inference arising from competing behavioural models.

Online publication date: Sat, 26-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email