Numerical comparison of dispersion of human exhaled droplets under different ventilation methods
by Zhang Lin; Jinliang Wang; Ting Yao; T.T. Chow; K.F. Fong
World Review of Science, Technology and Sustainable Development (WRSTSD), Vol. 10, No. 1/2/3, 2013

Abstract: Stratum ventilation has been proposed to accommodate elevated room temperatures recommended by several governments in East Asia for energy saving. One key issue in evaluating the performance of stratum ventilation is whether this air distribution method performs significantly different in person to person infectious diseases transmissions. Particle dispersion in a classroom under mixing ventilation, displacement ventilation and stratum ventilation respectively are investigated by numerical simulation. The drift-flux model based on an Eulerian-Eulerian approach is adopted to simulate the particle movement in a room. The results show that the flow patterns created by different ventilation methods have great influence on the particle fates. The particle concentrations for the breathing zone under stratum ventilation are significantly lower than that under mixing ventilation and/or that under displacement ventilation, which imply that the risk of pathogen inhalation under stratum ventilation is lower than that under mixing ventilation and/or displacement ventilation.

Online publication date: Fri, 28-Feb-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the World Review of Science, Technology and Sustainable Development (WRSTSD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email