Temperature dependent morphological evolution of Rh nanopyramids
by Govind; Theodore E. Madey
International Journal of Nanotechnology (IJNT), Vol. 9, No. 10/11/12, 2012

Abstract: The temperature dependent oxygen-induced nanopyramidal faceting of atomically rough Rh(210) surface has been studied using scanning tunnelling microscopy (STM). Rh(210) surface is annealed in oxygen at temperature ≥550 K, the surface completely covered with nanometre-scale facets. The annealing temperature is found to be one of the responsible factors for the nucleation and growth of faceted surface which is characterised as three-sided nanoscale pyramids exposing one reconstructed (110) and two {731} faces on each pyramid. STM measurements confirm that the average size of the nanopyramids depends upon the annealing temperature. Our experimental results revealed that the fine structure of the Rh nanopyramids is influence by the change in the oxygen coverage. Nanopyramidal faceted Rh(210) could be used as a potential template for studies of structure sensitive reactions.

Online publication date: Thu, 04-Oct-2012

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com