Prediction and comparison of surface roughness in CNC-turning process by machine vision system using ANN-BP and ANFIS and ANN-DEA models
by U. Natarajan; S. Palani; B. Anandampillai; M. Chellamalai
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 12, No. 1/2, 2012

Abstract: Machine vision methods of roughness measurement are being developed worldwide due to their inherent advantages including non-contact and rapid surface measurement capability. In this work, a back propagation (BP) and a differential evolution algorithm (DEA) based on artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) model have been used for the prediction of surface roughness in turning operations. Cutting speed, feed rate, depth of cut and average grey level of the surface image of work-piece, acquired by computer vision were taken as the input parameters and surface roughness as the output parameter. The results obtained from the ANN-BP, ANFIS and ANN-DEA models were compared with observed values. It is found that the predicted values are in good agreement with the experimental values. It is also found that the error percentage is minimal and it is also observed that the convergence speed for the ANN-DEA model is higher than the ANN-BP and ANFIS.

Online publication date: Sat, 23-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email