EverMiner: consideration on knowledge driven permanent data mining process
by Jan Rauch
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 4, No. 3, 2012

Abstract: A data mining task is usually solved in six main steps described in the CRISP-DM methodology. The paper introduces another approach to data mining. Data mining is understood as a permanent knowledge driven process. It is assumed that there is a well organised knowledge repository containing both relevant domain knowledge and new knowledge found in the analysed data. It is also assumed that there are several tools that formulate reasonable data mining tasks, search in the analysed data for true patterns relevant to the formulated tasks, filter out found patterns that can be understood as the consequences of items of knowledge stored in the repository, synthesise new items of knowledge from the remaining patterns and store items of new knowledge in the knowledge repository. It is argued that a system consisting of such tools can be built from already existing tools based on the GUHA method and observational calculi.

Online publication date: Sat, 23-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com