A parcel based modelling concept for studying subsea gas release and the effect of gas dissolution
by Paal Skjetne; Jan Erik Olsen
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 12, No. 2/3, 2012

Abstract: A modelling concept for analysing the fate of a subsea gas release is presented. The concept is based on a coupled Eulerian-Lagrangian method. The gas bubbles are modelled and tracked as parcels in a Lagrangian Discrete Phase Model (DPM). The continuous water and atmospheric gas are covered by an Eulerian VOF model. The model accounts for compressible gas effects, bubble size, gas dissolution and is fully transient. It compares well with experiments from a release depth of 7 m. The concept is applied to a set of release scenarios and the results are presented.

Online publication date: Tue, 25-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com