TMPR-scheme for reliably broadcast messages among peer processes
by Ailixier Aikebaier, Tomoya Enokido, Makoto Takizawa
International Journal of Grid and Utility Computing (IJGUC), Vol. 2, No. 3, 2011

Abstract: Nowadays information systems are being shifted to distributed architectures. The peer-to-peer (P2P) model as a fully distributed system, is composed of peer processes (peers). Here, peers have to efficiently and flexibly make an agreement on one common value which satisfies an agreement condition. In the agreement protocol, each peer has to deliver values to all the peers in a group. We take advantage of the multipoint relaying (MPR) mechanism to efficiently broadcast messages. Here, if a peer which forwards messages to other peers is faulty, the peers cannot receive messages. In this paper, we newly discuss a trustworthiness-based broadcast (TBB) algorithm where only the trustworthy peers forward messages. That is, untrustworthy peers, i.e., peers prone to faults and malicious behaviours do not forward messages. Here, the transmission fault implied by faulty peers can be reduced. We evaluate the TBB algorithm in terms of the number of messages compared with the pure flooding and MPR algorithms.

Online publication date: Sat, 28-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Grid and Utility Computing (IJGUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email