Privacy preservation for associative classification: an approximation algorithm
by Juggapong Natwichai
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 6, No. 3, 2011

Abstract: Privacy is one of the most important issues when dealing with the individual data. Typically, given a data set and a data-processing target, the privacy can be guaranteed based on the pre-specified standard by applying privacy data-transformation algorithms. Also, the utility of the data set must be considered while the transformation takes place. However, the data-transformation problem such that a privacy standard must be satisfied and the impact on the data utility must be minimised is an NP-hard problem. In this paper, we propose an approximation algorithm for the data transformation problem. The focused data processing addressed in this paper is classification using association rule, or associative classification. The proposed algorithm can transform the given data sets with O(k log k)-approximation factor with regard to the data utility comparing with the optimal solutions. The experiment results show that the algorithm is both effective and efficient comparing with the optimal algorithm and the other two heuristic algorithms.

Online publication date: Wed, 22-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email