Title: Privacy preservation for associative classification: an approximation algorithm

Authors: Juggapong Natwichai

Addresses: Faculty of Engineering, Department of Computer Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract: Privacy is one of the most important issues when dealing with the individual data. Typically, given a data set and a data-processing target, the privacy can be guaranteed based on the pre-specified standard by applying privacy data-transformation algorithms. Also, the utility of the data set must be considered while the transformation takes place. However, the data-transformation problem such that a privacy standard must be satisfied and the impact on the data utility must be minimised is an NP-hard problem. In this paper, we propose an approximation algorithm for the data transformation problem. The focused data processing addressed in this paper is classification using association rule, or associative classification. The proposed algorithm can transform the given data sets with O(k log k)-approximation factor with regard to the data utility comparing with the optimal solutions. The experiment results show that the algorithm is both effective and efficient comparing with the optimal algorithm and the other two heuristic algorithms.

Keywords: privacy preservation; associative classification; approximation; privacy protection; data transformation; association rules; data security.

DOI: 10.1504/IJBIDM.2011.041959

International Journal of Business Intelligence and Data Mining, 2011 Vol.6 No.3, pp.283 - 301

Published online: 22 Apr 2015 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article