Improved differential evolution algorithm with decentralisation of population
by Musrrat Ali, Millie Pant, Ajith Abraham
International Journal of Bio-Inspired Computation (IJBIC), Vol. 3, No. 1, 2011

Abstract: Differential evolution (DE) is a reliable and versatile function optimiser especially suited for continuous optimisation problems. Practical experience, however, shows that DE easily looses diversity and is susceptible to premature and/or slow convergence. This paper proposes a modified variant of DE algorithm called improved differential evolution (IDE). It works in three phases: decentralisation, evolution and centralisation of the population. Initially, the individuals of the population are partitioned into several groups of subpopulations (decentralisation phase) through a process of shuffling. Each subpopulation is allowed to evolve independently from each other with the help of DE (evolution phase). Periodically, the subpopulations are merged together (centralisation phase) and again new subpopulations are reassigned to different groups. These three phases helps in searching all the potential regions of the search domain effectively, thereby, maintaining the diversity. The promising nature of IDE is demonstrated on a testbed of 16 benchmark problems having box constraints. Comparison of numerical results shows that IDE is either better or at par with other contemporary algorithms.

Online publication date: Wed, 12-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email