Strategies for repeated games with subsystem takeovers implementable by deterministic and self-stabilising automata
by Shlomi Dolev, Elad Michael Schiller, Paul G. Spirakis, Philippas Philippas
International Journal of Autonomous and Adaptive Communications Systems (IJAACS), Vol. 4, No. 1, 2011

Abstract: Systems of selfish-computers are subject to transient faults due to temporal malfunctions; just as the society is subjected to human mistakes. Game theory uses punishment for deterring improper behaviour. Due to faults, selfish-computers may punish well-behaved ones. This is one of the key motivations for forgiveness that follows any effective and credible punishment. Therefore, unplanned punishments must provably cease in order to avoid infinite cycles of unsynchronised behaviour of 'tit for tat'. We investigate another aspect of these systems. We consider the possibility of subsystem takeover. The takeover may lead to joint deviations coordinated by an arbitrary selfish-computer that controls an unknown group of subordinate computers. We present strategies that deter the coordinator from deviating in infinitely repeated games. We construct deterministic automata that implement these strategies with optimal complexity. Moreover, we prove that all unplanned punishments eventually cease by showing that the automata can recover from transient faults.

Online publication date: Sat, 24-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Autonomous and Adaptive Communications Systems (IJAACS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email