A proposition of 3D inertial tolerancing to consider the statistical combination of the location and orientation deviations
by Pierre-Antoine Adragna, Serge Samper, Maurice Pillet
International Journal of Product Development (IJPD), Vol. 10, No. 1/2/3, 2010

Abstract: Tolerancing of assembly mechanisms is a major interest in the product life cycle. One can distinguish several models with growing complexity, from 1-dimensional (1D) to 3-dimensional (3D) (including form deviations), and two main tolerancing assumptions, the worst case and the statistical hypothesis. This paper presents an approach to 3D statistical tolerancing using a new acceptance criterion. Our approach is based on the 1D inertial acceptance criterion that is extended to 3D and form acceptance. The modal characterisation is used to describe the form deviation of a geometry as the combination of elementary deviations (location, orientation and form). The proposed 3D statistical tolerancing is applied on a simple mechanism with lever arm. It is also compared to the traditional worst-case tolerancing using a tolerance zone.

Online publication date: Thu, 03-Dec-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Product Development (IJPD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com