Optimal two-level speed assignment for real-time systems
by Enrico Bini, Claudio Scordino
International Journal of Embedded Systems (IJES), Vol. 4, No. 2, 2009

Abstract: Reducing energy consumption is one of the main concerns in the design and implementation of embedded real-time systems. For this reason, the current generation of processors allows to vary voltage and operating frequency to balance computational speed and energy consumption. This technique is called dynamic voltage scaling (DVS). When applying DVS to hard real-time systems, it is important to provide the worst-case computational requirement; otherwise the timing constraints may be violated. However, the probability of a task executing for its worst-case execution time is very low. In this paper, we show how to exploit probabilistic information about the execution time of a task in order to reduce the energy consumed by the processor. Optimal speed assignments and transition points are found using a very general model for the processor. The model accounts for the processor idle power and time/energy overheads due to frequency transitions. We also show how these results apply to some significant cases.

Online publication date: Thu, 20-Aug-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com