VOF-based simulation of reactive mass transfer across deformable interfaces
by Dieter Bothe, Michael Kroger, Andreas Alke, Hans-Joachim Warnecke
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 9, No. 6/7, 2009

Abstract: In this paper, a Volume-of-Fluid (VOF)-based approach for the Direct Numerical Simulation (DNS) of reactive mass transfer in gas–liquid flows is described. At the interface, local thermodynamic equilibrium is assumed and modelled by Henry's law. First numerical simulation results are presented for non-reactive and reactive mass transfer from rising gas bubbles to a surrounding liquid. For the evaluation of reactive mass transfer simulations with a consecutive, competitive reaction system in the liquid, a local selectivity is employed.

Online publication date: Tue, 21-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com