Complementary multi-gate tunnelling FETs: fabrication, optimisation and application aspects
by M. Fulde, A. Heigl, G. Wachutka, G. Knoblinger, D. Schmitt-Landsiedel
International Journal of Nanotechnology (IJNT), Vol. 6, No. 7/8, 2009

Abstract: In this paper fabrication, optimisation and application aspects of complementary Multiple-Gate Tunnelling FETs (MuGTFETs) are presented. Tunnelling FETs (TFETs) are realised in a state-of-the-art low-power multi-gate CMOS technology. n- and p-type tunnelling currents are observed within a single device structure. Digital and analogue device performance is analysed. Measured devices show on-currents in the tens of nA regime, limited by not optimised doping profiles. However, very low leakage currents and promising analogue characteristics are observed. Devices with a channel length of only 65 nm feature an intrinsic gain of more than 300. The scaling potential of multi-gate tunnelling FETs is proven by measurements and device simulations that reveal a low dependence of the device characteristics on the channel length. Extensive device simulations are carried out, indicating that device behaviour can be optimised by gate stack engineering and tuning of the doping profiles. The devices show low temperature dependence and competitive matching behaviour. Based on the well defined temperature behaviour a new voltage reference circuit is proposed as potential application for the MuGTFET.

Online publication date: Mon, 18-May-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com