Entropy analysis of laminar-forced convection in a pipe with wall roughness
by A. Alper Ozalp
International Journal of Exergy (IJEX), Vol. 6, No. 2, 2009

Abstract: Momentum and heat transfer rates, as well as entropy generation have been numerically investigated for fully developed, forced convection, laminar flow in a micro-pipe. Compressible and variable fluid property continuity, Navier-Stokes and energy equations are solved for various Reynolds number, constant heat flux and surface roughness cases; entropy generation is discussed in conjunction with the velocity and temperature profiles, boundary layer parameters and heat transfer-frictional characteristics of the pipe flow. Simulations concentrated on the impact of wall roughness based viscous dissipation on the heat transfer behaviour and so occurring heating/cooling activity and the resulting overall and radial entropy generation.

Online publication date: Sun, 22-Mar-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com