Efficiency of applying Hopfield neural networks with simulated annealing and genetic algorithms for solving m-partite graph problem
by X.G. Ming, K.L. Mak
International Journal of Computer Applications in Technology (IJCAT), Vol. 12, No. 6, 1999

Abstract: An m-partite graph is defined as a graph that consists of m nodes each of which contains a set of elements, and the arcs connecting elements from different nodes. Each element in this graph comprises its specific attributes such as cost and resources. The weighted values of arcs represent the dissimilarities of resources between elements from different nodes. The m-partite graph problem is defined as selecting exactly one representative from a set of elements for each node in such a way that the sum of both the costs of the selected elements and their dissimilarities is minimised. In order to solve such a problem, Hopfield neural networks based approach is adopted in this paper. The Liapunov function (energy function) of Hopfield neural networks specially designed for solving m-partite graph problem is constructed. In order to prohibit Hopfield neural networks from becoming trapped in their local minima, simulated annealing and genetic algorithms are thus utilised and combined with Hopfield neural networks to get globally optimal solution to m-partite graph problem. The result of the approaches developed in this paper shows the definitive promise for leading to the optimal solution to the m-partite graph problem compared with that of other currently available algorithms.

Online publication date: Sun, 13-Jul-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com