Chemical sensing with nanowires using electrical and optical detection
by Matt Law, Donald J. Sirbuly, Peidong Yang
International Journal of Nanotechnology (IJNT), Vol. 4, No. 3, 2007

Abstract: Chemical nanosensors based on inorganic nanowires hold promise for the extremely sensitive, direct detection of pollutants, toxins and biomolecules on platforms small enough to be integrated on optoelectronic chips or even deployed in living organisms. This paper discusses two approaches to nanowire-based chemical and biological detection. First we review the development of electrically-driven nanowire gas sensors that function by an adsorbate-mediated conductivity mechanism. We then describe an alternative sensing strategy that exploits the excellent waveguiding ability of high-refractive-index nanowires to create subwavelength evanescent wave sensors that operate in solution with an optical, rather than electrical, readout.

Online publication date: Tue, 01-May-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com