Theoretical validation of earlier developed experimental rotor faults diagnosis model
by Natalia F. Espinoza-Sepulveda; Jyoti K. Sinha
International Journal of Hydromechatronics (IJHM), Vol. 4, No. 3, 2021

Abstract: A machine learning (ML) model is developed earlier for the rotating machine faults diagnosis. Experimental vibration data in time domain from a rotating rig are used for this ML development. The ML model is developed at a machine speed with different rotor faults and then this experimental ML model is blindly tested with the vibration data at a different machine speed. In this paper, a finite element (FE) model for the rig is developed to understand the dynamics and to validate both, the developed experimental ML model and the vibration-based parameters used. The validation is conducted first at a machine speed and then the model is tested blindly at a different machine speed. It is generally time consuming and often difficult to simulate all kinds of defects and their different sizes in the experimental rig. Therefore, the mathematical FE model of the experimental rig provides the possibility to further extend the research to different defects and other operational conditions.

Online publication date: Thu, 07-Oct-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email