Approximate solution of fractional differential equations using Shannon wavelet operational matrix method
by Javid Iqbal; Rustam Abass; Puneet Kumar
International Journal of Computing Science and Mathematics (IJCSM), Vol. 13, No. 3, 2021

Abstract: Many physical problems are frequently governed by fractional differential equations and obtaining the solution of these equations have been the subject of a lot of investigations in recent years. The aim of this paper is to propose a novel and effective method based on Shannon wavelet operational matrices of fractional-order integration. The theory of Shannon wavelets and its properties are first presented. Block Pulse functions and collocation method are employed to derive a general procedure in constructing these operational matrices. The main peculiarity of the proposed technique is that it condenses the given problem into a system of algebraic equations that can be easily solved by MATLAB package. Furthermore, a designed scheme is applied to numerical examples to analyse its applicability, reliability, and effectiveness.

Online publication date: Mon, 02-Aug-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email