Breast cancer data classification using deep neural network
by Vipul Sharma; Saumendra Kumar Mohapatra; Mihir Narayan Mohanty
International Journal of Intelligent Systems Design and Computing (IJISDC), Vol. 3, No. 2, 2020

Abstract: Artificial neural networks and their variants play an important role in the analysis and classification of different biomedical data. Deep learning is an advanced machine learning approach which has been used in many applications in the last few years. Worldwide breast cancer is a major disease for women; it is one of the most challenging jobs to detect at an early stage. The authors in this work have taken an attempt to classify the breast cancer data collected from the UCI machine learning repository. Malignant and benign two different types of breast cancer tumours are classified using deep neural network (DNN). Before classification two pre-processing steps are done for improving the accuracy. The correlation and one-hot encoding of the dataset was done for getting some relevant features that can be used as the input to the DNN. Around 94% of classification accuracy is achieved by using a six-layer DNN classifier. The result is also compared with some earlier works and it is found that the proposed classifier is providing better results as compared to others.

Online publication date: Fri, 21-May-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Design and Computing (IJISDC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email