Facial emotion recognition in real-time using deep convolution networks
by Meenakshi Kumar; Tanya Goyal; Pankaj Gupta
International Journal of Behavioural and Healthcare Research (IJBHR), Vol. 7, No. 3, 2021

Abstract: The objective of this study is to present a detection method associated to automatic live facial expression identification by analysing the frontal-face image and predicting the most accurate expression out of the seven major countenances. Since our behaviour is strongly correlated to our emotions, the facial expressions and body gestures may act as a noteworthy source of non-verbal communication that may tell about the state of an individual. The interest in emotional computing through facial expressions has increased as it has wide application in industries, market and medical field. The doctors may be helped through facial expression recognition, may be by online machine monitoring system or sometimes when any patient is not able to communicate verbally. This study presents a model for facial recognition that permits disturbances to apprehend information from their surroundings in real-time, thus improving the classification process. The work has been implemented using Python IDLE (3.7) and Open Source Computer Vision Library (Open-CV2). The study proves to provide accurate and precise results.

Online publication date: Thu, 06-May-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Behavioural and Healthcare Research (IJBHR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com