Optimisation design for wind turbine mainshaft bearing based on lubrication reliability
by Liang Cao; S.G. Gong; Y.R. Tao
International Journal of Reliability and Safety (IJRS), Vol. 14, No. 4, 2020

Abstract: The lubrication of the mainshaft bearing has a great influence on the safe operation of wind turbines. In this paper, an optimal design model of the mainshaft bearing of a wind turbine is established on the lubrication reliability analysis. The maximum rated dynamic load is set as the design objective. The roller number, roller diameter, roller length and wall thicknesses are design parameters. Constraints are formulated mainly based on lubrication reliability and structure consideration. In the lubrication reliability constraint model, the lubrication reliability criterion was determined by solving the minimum film thickness of numerical calculation model of grease EHL. The reliability of bearing lubrication is calculated by Monte Carlo Simulation, and uncertain variables based on sensitivity analysis are selected to improve calculation precision. In the structure constraints, range for the design variables is determined in terms of requirements of geometric structure and strength. Finally, the mainshaft bearing was optimised and analysed by genetic algorithms. The analysis results show that the rated dynamic load of bearing is improved from 1.3e6 N to 2e6 N. Meanwhile the lubrication reliability is improved about 10%. The model presented shows great advantages and practical usefulness in the mainshaft bearing research of wind turbines.

Online publication date: Fri, 30-Apr-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com