Real-time segmentation of weeds in cornfields based on depthwise separable convolution residual network
by Hao Guo; Shengsheng Wang; Yinan Lu
International Journal of Computational Science and Engineering (IJCSE), Vol. 23, No. 4, 2020

Abstract: Traditional artificial spraying of pesticides leads not only to lower utilisation of pesticides but also to environmental pollution. However, intelligent weeding devices can identify weeds and crops through sensing devices for selective spraying, which will effectively reduce the use of pesticides. The accurate and efficient identification method of crops and weeds is very crucial to the development of the mechanised weeding model. To improve the segmentation exactitude and real-time performance of crops and weeds, we propose a lightweight network based on the encoder-decoder architecture, namely, SResNet. The shuffle-split-separable-residual block was employed to compress the model and increase the number of network layers at the same time, thereby extracting more abundant pixel category information. Besides, the model was optimised by a weighted cross-entropy loss function due to the imbalance of pixel ratios of background, crops and weeds. The results of the experiment prove that the method presented can greatly improve the segmentation accuracy and real-time segmentation speed on the crops and weeds dataset.

Online publication date: Tue, 23-Feb-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email