Nanoinstabilities as revealed by shrinkage of nanocavities in silicon during irradiation
by Xianfang Zhu, Zhanguo Wang
International Journal of Nanotechnology (IJNT), Vol. 3, No. 4, 2006

Abstract: While the thermodynamic nonequilibrium properties of nanoparticles are being extensively studied, the thermodynamic nonequilibrium properties of their counterpart: nanocavities, however, are less noticed. Here, we systematically review and comprehensively model the recently published results on the newly-found thermodynamic nonequilibrium properties of nanocavities in covalently bound materials during energetic beam irradiation. We also review and model the thermodynamic nonequilibrium properties of nanoparticles. The review and modelling not only demonstrates the novel nonequilibrium properties of such an open-volume nanostructure during external excitation but also gives a deep insight into the nonequilibrium thermodynamics of amorphous structures and the difference in the behaviours of defects in crystalline and in amorphous silicon. Especially, the review and modelling leads to two new concepts: anti-symmetry relation between a nanoparticle and a nanocavity; energetic beam induced-soft mode and lattice instability in condensed matter; which reveals that structure of a condensed matter would be unstable not only at nanosize scale but also at a nanotime scale in general. It is also reveals that such nanoinstabilities would be more pronounced in an amorphous structure than in a crystalline structure.

Online publication date: Fri, 20-Oct-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email