Discrete time portfolio optimisation managing value at risk under heavy tail return distribution
by Subhojit Biswas; Diganta Mukherjee
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 10, No. 4, 2020

Abstract: We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximise his expected utility of the portfolio subject to the value at risk assuming a heavy tail distribution of the stock price return. We use Markov decision process and dynamic programming principle to get the optimal strategies and the value function which maximise the expected utility for parametric as well as non-parametric distributions. Due to lack of explicit solution in the non-parametric case, we use numerical integration for optimisation. The highlights of the study are used Markov decision process and dynamic programming to get recursive relation for optimal strategy of known distribution. Once it approaches the terminal position, we will build-up more on the risky asset or will liquidate the risky asset. In the non-parametric case, we used numerical integration to find the recursive relation for optimal strategy. In this case, the value function we obtained has wide range of fluctuations and the same is also true for the portfolio wealth.

Online publication date: Wed, 28-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com