Improved Faster R-CNN identification method for containers
by Ning Chen; Xiaohu Ding; Hongyi Zhang
International Journal of Embedded Systems (IJES), Vol. 13, No. 3, 2020

Abstract: In a complex port environment, the fast and effective automatic visual recognition of containers is an important part of the intelligent operation and management of ports. Due to the large amount of container image data of complex scale and shape, the traditional target detection and recognition algorithm is limited by the illumination, weather and scenes of the port, it has created challenges and difficulties in port container recognition and identification. This paper proposes a deep learning method for container target recognition detection based on the Faster R-CNN framework, the deep separable network structure is introduced into the VGG network, and the DS-VGG network is designed to improve the accuracy while reducing the network parameters to improve the recognition speed, by introducing the adversarial spatial transformer network (ASTN) to the Faster R-CNN network training to enhance the diversity of data features and improve recognition performance. In order to enhance the convolution feature extraction of container targets, a strategy training network that enhances sample target foreground features, multi-scale training learning and data amplification are used. Finally, the performance test and comparison test of the improved model proposed in this paper are carried out. The test results show that the target recognition speed is 50 frames/s on the container test set, the average accuracy rate is 97.7% and the recall rate is 94.45%. Compared with Faster R-CNN, the recognition performance is significantly improved in complex scenes such as fog, rain and night.

Online publication date: Wed, 30-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email