Flow and wall shear rate analysis for a cruciform jet impacting on a plate at short distance
by Florin Bode; Amina Meslem; Claudiu Patrascu; Ilinca Nastase
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 3, 2020

Abstract: There are numerous turbulence models that have been developed in the past years, many of them being used in predicting flows, turbulence, mass and/or heat transfer. The particular case of an impinging jet implies all of the above. The performance of eight highly used Reynolds averaged Navier-Stokes turbulence models is examined in simulating a very sheared lobed impinging jet. The study is based on the investigation of an orthogonally lobed jet, impinging on a flat surface that flows out from a nozzle having a cruciform cross-section at a Reynolds number of 5620. Two experimental methods were implied for the comparison with numerical results. For the measurement of the wall shear rate an electrodiffusion method was employed. The velocity flow fields were measured using particle image velocimetry technique. The relative strengths and drawbacks of the SST k-ω, k-ω, TransSST, k-ε realisable, RNG k-ε, k-ε, k-kl-ω and RSM turbulence models are compared.

Online publication date: Mon, 11-May-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com