Numerical study on the effect of rheological parameters on the droplet deformation process in Newtonian and non-Newtonian two-phase systems using extended finite element method
by Mohammad Ali Moeeni; Mahdi Salami Hosseini; Mir Karim Razavi Aghjeh; Mehdi Mostafaiyan
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 3, 2020

Abstract: In the present study, attempts were made to study the effect of rheological parameters on the drop deformation process. For this purpose, both Newtonian and non-Newtonian (Carreau-Yasuda model) were considered and extended finite element method (XFEM) along with level-set method (LSM) were used to simulate the process. The result showed that in Newtonian-Newtonian systems, there was no shear stress overshoot (maximum) during the deformation process and the shear stress increased monotonically until it reached a steady-state, whereas, it exhibited an overshoot (maximum) for non-Newtonian systems. Results also showed that the increase of the wall confinement parameter (R/H) would increase the droplet deformation monotonically for studied viscosity ratios. It was further observed that the steady-state deformation parameter (Dss) was increased as Ca increased from 0.2 to 0.8 for viscosity ratio (λ) between 0.5 and 2.5.

Online publication date: Mon, 11-May-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com