A discrete packing model of granular material confined in a vertical column
by Qinghai Jiang; Kai Wu; Yu Sun; Xin Xie; Zhengyu Yang
International Journal of Computing Science and Mathematics (IJCSM), Vol. 11, No. 3, 2020

Abstract: In this paper, we analysed the transmission rules of interparticle forces between granular particles, based on which, we then proposed a discrete packing model to calculate the static pressure at the bottom of granular material confined in a vertical column. Our mechanical analysis and numerical simulation results indicate that the silo effect is caused by the frictional contacts between border particles and inner walls, the static pressure at the bottom depends on the external load initially, and then tends to a saturation pressure (Pn) in an exponential form. The saturation pressure is positive linear related to the container radius (R) with the same granular matter and stacking manner. The saturation pressure is directly proportional to the particle size (ra), and the increasing or decreasing characteristic depends on the frictional property of inner walls, the friction and stacking angle of grains. Finally, we compared the predictions of the aforementioned model with the experimental results from the literature, and we observed that good agreement is achieved.

Online publication date: Mon, 20-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com