Hybrid adaptive random testing
by Esmaeel Nikravan; Saeed Parsa
International Journal of Computing Science and Mathematics (IJCSM), Vol. 11, No. 3, 2020

Abstract: Adaptive random testing (ART) subsumes a family of random testing techniques with an effective improvement. It is based on the observation that failure causing inputs tend to be clustered together. Hence the ART methods spread test cases more evenly within the input domain to improve the fault-detection capability of random testing. There have been several implementations of ART based on different intuitions and principles with their own advantages and disadvantages. In the different variants of ART methods, the majority of them use a variety of distance calculations, with corresponding computational overhead. The newly methods try to decrease computational overhead while maintaining the performance through partitioning the input domain. We outline a new partitioning-based ART algorithm with a hybrid search method and demonstrate experimentally that it can further improve the performance, with considerably lower overhead than other ART algorithms.

Online publication date: Mon, 20-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com