Energy, exergy and environmental analyses of a biomass driven multi-generation system
by Olusola Bamisile; Qi Huang; Mustafa Dagbasi; Michael Taiwo; Victor Adebayo
International Journal of Exergy (IJEX), Vol. 31, No. 3, 2020

Abstract: In this research, a biogas driven multi-generation system is presented. The multi-generation system consists of a gas cycle, steam cycle, absorption cycle, hot water producing chamber and hot air producing chamber. The biogas used as thermal input source is derived from agricultural waste specifically maize silage and chicken manure. Thermodynamic analysis is done with energy and exergy approach. The exergy destruction within major components of these systems are also analysed. The environmental analysis for this research focuses on the carbon emission reduction. The energy and exergy efficiency of the system respectively increases from 25.16% and 18.61% when generating electrical energy only, to 73.15% and 27.27% when multi-generating.

Online publication date: Tue, 07-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com