Suppressing artificial equilibrium states caused by spurious currents in droplet spreading simulations with dynamic contact angle model
by Thomas Antritter; Martin Mayer; Peter Hachmann; Martin Wörner
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 2, 2020

Abstract: Accurate methods for numerical simulation of dynamic wetting and spreading phenomena are a valuable tool to support the advancement of related technological processes such as inkjet-printing. Here, it is demonstrated that numerical methods employing dynamic contact angle models are prone to artificial equilibrium states caused by spurious (parasitic) currents. The capability of different approaches in reducing spurious currents for sessile and spreading droplets with low equilibrium contact angle is evaluated. To minimise the influence of spurious currents on dynamic contact angle models, a smoothing step in the evaluation of the contact line velocity is introduced in this paper. The benefit and performance of this new approach is demonstrated by algebraic volume-of-fluid simulations of spreading and receding droplets with the Kistler dynamic contact angle model.

Online publication date: Mon, 06-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email