Finite element-based contact analysis of a radially functionally graded hemisphere and a rigid flat
by Tamonash Jana; Anirban Mitra; Prasanta Sahoo
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 13, No. 2/3, 2019

Abstract: In the present work, a normally loaded contact between a radially functionally graded hemisphere and a rigid flat is analysed in perfect slip condition for different values of gradient/inhomogeneity parameter. The analysis was performed with an axisymmetric model in commercial finite element software ANSYS 18.2. The Young's modulus, yield strength and tangent modulus (for bilinear isotropic hardening) are varied according to an exponential function. The effect of the inhomogeneity parameter on different contact behaviours, e.g., contact area, contact pressure, contact stresses, etc., of the hemisphere are obtained. Stress and deformation behaviour of the contact interface as well as of the entire hemisphere has been analysed. It is observed that for negative inhomogeneity parameter, while being deformed by the rigid flat, the summit of the hemisphere loses contact with flat and sinks in to have a concave shape at the top of the hemisphere. This phenomenon has not been reported in established literature yet.

Online publication date: Mon, 23-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email