Predicting hospital length of stay using neural networks
by Thanos Gentimis; Ala' J. Alnaser; Alex Durante; Kyle Cook; Robert Steele
International Journal of Big Data Intelligence (IJBDI), Vol. 6, No. 3/4, 2019

Abstract: Accurate prediction of hospital length of stay can provide benefits for hospital resource planning and quality-of-care. We describe the utilisation of neural networks for predicting the length of hospital stay for patients with various diagnoses based on selected administrative and clinical attributes. An all-condition neural network, that can be applied to all patients and not limited to a specific diagnosis, is trained to predict whether patient stay will be long or short in terms of the median length of stay as the cut-off between long and short, and predicted at the time the patient leaves the intensive care unit. In addition, neural networks are trained to predict whether patients of 14 specific common primary diagnoses will have a long or short stay, as defined as greater than or less than or equal to the median length of stay for that particular condition. Our dataset is drawn from the MIMIC III database. Our prediction accuracy is approximately 80% for the all-condition neural network and the neural networks for specific conditions generally demonstrated higher accuracy and all clearly out-performed any linear model.

Online publication date: Fri, 19-Jul-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email