A new 3D finite element for the finite deformation of nearly incompressible hyperelastic solids
by Ashutosh Bijalwan; B.P. Patel
International Journal of Materials and Structural Integrity (IJMSI), Vol. 13, No. 1/2/3, 2019

Abstract: Volumetric locking is exhibited by nearly incompressible solids such as rubber, resulting in over-stiffening response of the finite element mesh. In this work, we developed the displacement-based computationally efficient volumetric locking-free 3D finite element using smoothening of determinant of deformation gradient (J-Bar method) within the framework of isotropic hyperelasticity. The developed methodology is employed to analyse a rubber block undergoing finite stretch and bending deformations. The convergence study for finite stretch and bending of rubber block is presented. Results of the analysis show that J-Bar method efficiently removes the volumetric locking.

Online publication date: Fri, 28-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com