Nonlinear analysis of FGM plates using generalised higher order shear deformation theory
by Singam Srividhya; Basant Kumar; R.K. Gupta; Amritham Rajagopal
International Journal of Materials and Structural Integrity (IJMSI), Vol. 13, No. 1/2/3, 2019

Abstract: In the present work a generalised higher order shear deformation theory (GHSDT) for the flexural analysis of the functionally graded plates subjected to uniformly distributed load of varying intensities has been formulated. A finite element formulation with a confirming type isoparametric approximation has been formulated and implemented. Various types of boundary conditions have been considered for the analysis. The formulation accounts for geometric nonlinear terms in the strains. The formulation also complies with plate surface boundary conditions and does not require shear correction factors. The formulation has been validated by comparing the results with those available in the literature. Numerical results for different load parameters, volume fraction, and boundary conditions have been presented and compared with literature. Results show that the proposed GHSDT gives a better approximation to transverse shear strains and the results are closer to those obtained from analytical solutions.

Online publication date: Fri, 28-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email