Higher order Hermite enriched contact finite elements for adhesive contact problems
by Vishal Agrawal; Sachin Singh Gautam
International Journal of Materials and Structural Integrity (IJMSI), Vol. 13, No. 1/2/3, 2019

Abstract: It is known that during the simulation of the adhesive contact problems highly nonlinear responses of interaction forces occur within the very narrow adhesive zone. It leads to the loss of quadratic-rate of convergence during Newton-Raphson iterations and unstable computational behaviour. In case of standard finite element formulation, a very fine mesh resolution is needed for the stable computations, but a significant computational cost is associated. For minimising the cost without the loss of accuracy of the solution, contact surface enrichment approaches have been presented. These approaches utilise the higher-order Lagrangian polynomial functions for the enrichment of contact finite elements. In the present work, based on the incorporation of fifth- and seventh-order Hermite interpolation functions two new enriched contact finite elements are formulated. The performance of proposed enriched contact finite elements is demonstrated through the simulation of peeling of an initially flat deformable strip from a rigid substrate. A stable solution is obtained at a relatively coarser mesh than the fully Lagrangian discretised finite element mesh. It is shown that the proposed higher order Hermite enriched contact finite elements attain better performance when compared with earlier introduced enriched elements.

Online publication date: Fri, 28-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com