Integration of Kestrel-based search algorithm with artificial neural network for feature subset selection
by Israel Edem Agbehadji; Richard C. Millham; Simon James Fong; Hongji Yang
International Journal of Bio-Inspired Computation (IJBIC), Vol. 13, No. 4, 2019

Abstract: Feature selection plays an important role in data pre-processing of data management. Although there are different methods available for feature selection such as filter, wrapper and embedded methods, selecting relevant features still remains a challenge in the current dispensation of big data. This paper proposes a new meta-heuristic method that integrates with wrapper method for feature subset selection. A mathematical model is formulated using random encircling and imitative behaviour (REIM) of the Kestrel bird for optimal selection of features. A test dataset from a benchmark was used to test the proposed algorithm. The performance of proposed algorithm was evaluated against PSO and ACO. The proposed model is observed to provide low error rate of 0.001143 as compared with PSO (0.0589) and ACO (0.05236). In terms of optimal size over dimension of each dataset, the proposed model performed well in 3 out of 4 datasets, while PSO-ANN performed well in 1 out of 4 datasets, ACO-ANN could not perform in any of the dataset.

Online publication date: Wed, 12-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email