Forthcoming and Online First Articles

International Journal of System of Systems Engineering

International Journal of System of Systems Engineering (IJSSE)

Forthcoming articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Online First articles are published online here, before they appear in a journal issue. Online First articles are fully citeable, complete with a DOI. They can be cited, read, and downloaded. Online First articles are published as Open Access (OA) articles to make the latest research available as early as possible.

Open AccessArticles marked with this Open Access icon are Online First articles. They are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

Register for our alerting service, which notifies you by email when new issues are published online.

We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of System of Systems Engineering (68 papers in press)

Regular Issues

  • Enhancing the Performance Assessment of Network-Based and Machine Learning for Module Availability Estimation   Order a copy of this article
    by Aqeel Luaibi Challoob, Abdullah Hasan Hussein 
    Abstract: Interpreting network telemetry data is difficult. Size and volume are network assets. Production rises. ML predicts traffic trends to help decision-making. Classification and monitoring enable data science, sensor fusion, diagnostic devices, and vulnerability assessment. Complex domains have algorithms. Researchers haven't found a fast, reliable way to categorise a dataset. Most literature evaluates classifiers' accuracy and falsification rate. Classification constraints include model development time, FPR, and precision. AI can estimate network complexity. New technology expands and complicates network messages. First, send facts. Only key nodes send messages in conventional opportunistic networks. Overusing key nodes reduces network life. We provide energy-efficient message-based routing. We assess message relevance and node energy during forwarding. It fixes energy-hungry nodes and prioritizes vital signals. We replace the cache when it’s full. This hinders mobility aid. This study employs machine learning to improve traditional mobility management. It presents a realistic technique using path-based forwarding architectures to identify network links. Instead of destination-based routing, delivery path information is transmitted and advanced using a mandatory access test.
    Keywords: Energy Efficient; Sensor Network; Machine Learning; Network Security; Data Aggregation; Module Availability Estimation; Switchml; Pytorch; Tensorflow; Network Infrastructure.
    DOI: 10.1504/IJSSE.2024.10054530
  • Wireless Sensor Network Data Gathering Using Multi-Fold Gravitational Search Algorithm with Mobile Agent   Order a copy of this article
    Abstract: Wireless sensor network communications fascinate researchers. WSN uses affordable sensor nodes to deliver data wirelessly to a base station. Reduces sensor node energy and transmission costs. Well-tested and implemented MWCSGA. NS-2 is used to evaluate CSOGA’s performance. GA-LEACH and MW-LEACH measure work performance alongside CSOGA. Simulating multiple circumstances tests the methods. TCL and C++ dominate Ns2. Live node deployment is animated (NAM). Tracking files monitor performance. Parameters and values. Metrics include energy use, end-to-end latency, packet, speed, and delivery ratio. This study shows how a WSN for IOT can use a mobile agent and MFGSA. The GSA selects the cluster head (CH) and optimises the MA’s path to sensor nodes. Cluster head optimisation included node energy, BS transmission costs, and neighbouring nodes carrying emergency data. Clustering assigned MA source nodes, and GSA optimised the path. The suggested method's network efficiency and lifetime are compared to older methods. GSA-based itinerary planning for the MA is compared to other task energy consumption methodologies. The new technique enhances MA success rate, network stability, and energy use.
    Keywords: Wireless Sensor Network; Data collection; Multi-Fold Gravitational Search Algorithm (MFGSA); CH selection; Mobile Agent; network lifetime.
    DOI: 10.1504/IJSSE.2024.10054554
  • An Efficient Rabin Cryptosystem-Based Authentication Mechanism For Vehicular Ad-hoc Networks   Order a copy of this article
    by M.D. ISMAIL, Santanu Chatterjee, Jamuna Kanta Sing 
    Abstract: At present era Vehicular ad-hoc Network (VANET) plays an important role in modern traffic management activities Vehicular ad-hoc network can include basic stand-alone static elements to very highly sophisticated dynamic elements to provide data access as per real-time need To ensure user's core security concern over crucial data in transit, it essentially demands a foolproof user authentication scheme for accessing desired services from VANET clouds Recently various schemes have been designed to address numerous security concerns but very few schemes have concentrated to address all major attacks with efficiency We propose an improved and enhanced Rabin Cryptosystem based authentication mechanism to address all known major attacks with robustness keeping efficiency, scalability and dynamicism in picture We have rigorously carried out security analysis by AVISVA and Proverif Tools The analysis has shown that our scheme guarantees positional privacy, user anonymity and mutual authentication to prevent spoofing attack, password guessing attack, insider
    Keywords: Vehicular ad-hoc Network(VANET); User authentication; Rabin cryptosystem; AVISPA; Security; system of systems (SOS).
    DOI: 10.1504/IJSSE.2024.10055285
  • Medical Data Sharing Using Blockchain with Secure Patient/Doctor Interaction   Order a copy of this article
    by Vivekrabinson K, Vijayakumar D, Rajesh Kumar S, Dhamotharan R 
    Abstract: In this emerging technological era, digitization becomes unavoidable and dominates our daily lives However, in order to ensure the privacy of the data, it must be securely stored and exchanged Blockchain is commonly employed in the administration of patient health information In this paper, a health information exchange and secure storage system based on the private blockchain is presented The network is hosted by individual hospitals to enhance the security of their client’s information The system includes a Central Healthcare Provider (CHP), which manages the patients’ healthcare information By utilizing this trustworthy system, doctors can access patients’ historical data while maintaining patients’ privacy Additionally, a mechanism for symptom-matching is proposed for patients and doctors It enables two distinct patients/doctors to share their experience with each other. This can be accomplished by performing a mutual handshake between two entities and generating a key to secure communication during the session.
    Keywords: Blockchain; Central Health Provider; healthcare; symptom-matching; tamper resistance.
    DOI: 10.1504/IJSSE.2024.10055455
  • Performance Analysis of Internet of Things enabled WSN for Agriculture   Order a copy of this article
    by Mrs.Bhawna Kumawat Kumawat, Reeba Korah 
    Abstract: An increasing number of sensors and other intelligent devices are making the Internet of Things (IoT) a topic of interest in the abstract for the simplicity with which information and communication may be obtained. Wireless sensor networks are crucial to the Internet of Things due to their low power consumption and high data interchange capacity. Agricultural precision systems focus on developing effective, economical, and dependable monitoring and actuation technologies. To do this, it makes use of several different technologies, including wireless sensor networks, sensor devices, the Internet of Things, and data analysis. The proposed study incorporates a wide range of technologies to prototype a precision agriculture system for medium and small agricultural plants, focusing on efficient energy management with self-charging capabilities and a low-cost strategy. A cloud-connected autonomous system with multiple sensor nodes is constructed. Smart data processing and analysis can improve forecasting, sensor management, and decision-making. The suggested system monitors soil moisture, humidity, and temperature using wireless sensor networks and the internet of things.
    Keywords: Internet of Things; Power Consumptions; Precision Agriculture; Energy Management; Wireless Sensor Networks.
    DOI: 10.1504/IJSSE.2024.10055456
  • Battery Aging Management Using War Optimization in Electric Vehicle Applications   Order a copy of this article
    by Puneet Kaur 
    Abstract: The growing interest in Electrical Vehicles (EVs) opens new possibilities in the use of the lithium-ion batteries (LIB) in order to provide ancillary grid services while they are plugged to recharging stations. The equivalent circuit model is a type of LIB model that is widely used in EV battery management systems (BMS), which is an essential component of the LIB for managing power and safe operation. The LIB's health may affect some factors as abnormal charging-discharging cycles, operating temperature, charge/discharge rate, internal faults and aging. The whole life cycle is depends on the accurate state of charge (SOC) estimation also the capacity of wide temperature range must be surpassed. In this paper, the SOC and state of health (SOH) joint estimation method with War Optimization Strategy (WOA) based efficient battery aging model is proposed that is the battery capacity managing with the consideration of recharge time and drivability. The depth of discharge, maximum battery current and state of charge are considered for achieving the battery aging model, which is using the multi-objective WOA.
    Keywords: battery management system; state of charge; depth of discharge; war optimization strategy; battery capacity; temperature.
    DOI: 10.1504/IJSSE.2024.10055466
  • A Survey on Methods and Apparatus of Offloading in Mobile Cloud Computing   Order a copy of this article
    by Priyajit Sen, Rajat Pandit, Debabrata Sarddar 
    Abstract: Mobile Cloud Computing is the recent technology that to provide execution of different mobile applications. Mobile devices are flexible and portable. The key disadvantages of mobile devices are limited battery life, lower bandwidth and insufficient storage capabilities. Mobile Cloud Computing reduces the drawbacks of mobile devices. The resolve the execution delay of mobile devices Mobile Edge Computing concept was proposed. Offloading is an effective method to save execution time and energy both. Code or Application Offloading allows executing a task in Cloud instead of Mobile Device itself. This paper presents a comprehensive discussion on different methodologies and the apparatus used for offloading of code or application into cloud. This paper also highlights on merits and demerits of different offloading techniques.
    Keywords: MCC; MEC; Execution Time; Femtolet; QoE; QoS; Delay; Energy Consumption; Data Offloading; Computation Offloading.
    DOI: 10.1504/IJSSE.2024.10055604
  • A Secure and Efficient Mobile ID Framework for Authentication with Enhance ECC   Order a copy of this article
    by Kapil Kant Kamal, Sunil Gupta, Padmaja Joshi, Monit Kapoor 
    Abstract: The broad adoption of smartphones as a primary computing platform has led to their use for several real-life applications. Online payment transactions, location-based services, electronic governance, and online social media are a few of them. Such applications require access to various services through mobile applications, sharing sensitive information like authentication credentials, pictures, videos, personal data, etc. Therefore, the adoption of secure Mobile Identity Management (IDM) is the need of the day. We, in this regard, provide a scheme for identity authentication during online transactions. We first analyse the design requirements and propose a Mobile ID authentication architecture by leveraging PKI (public-key infrastructure), EECC (Enhance Elliptic Curve Cryptography), and token-based authentication. Finally, we use function verification and performance analysis to assess the suggested method for Mobile identity authentication. By contrasting the proposed Enhance ECC with the current RSA (Rivest-Shamir-Adleman), AES, and ECC algorithms, the overall performance is examined. The experimental results show the viability of this proposal.
    Keywords: Mobile ID; Authentication; Cryptography; Key Management; Network Security.
    DOI: 10.1504/IJSSE.2025.10059079
  • Code Smells And Refactoring: A Tertiary Systematic Literature Review   Order a copy of this article
    by Abhishilpa Nandini, Randeep Singh, Amit Rathee 
    Abstract: Software systems with code smells are difficult to maintain and evolve, and their quality is also impaired resulting in enhanced maintenance costs along with question marks on their future sustainability Researchers have spent decades studying refactoring and smells which are key factors behind the degrading quality of a software system There area number of secondary studies published about code smells and refactoring, discussing their relationships with the quality of a software system, maintenance, and evolution, as well as the existing tools available for their detection and mitigation In lieu of the fact that the literature contains a huge collection of research publications dealing with code smell and refactoring activities and which also keep on evolving with time, this paper targets doing a tertiary systematic literature survey The systematic literature survey aims at defining code smell and refactoring in general, identifying as well as analyzing various tools and techniques available
    Keywords: Software Quality; Code Smells; Refactoring; RefactoingTools.
    DOI: 10.1504/IJSSE.2024.10055784
  • Multilayer Perceptron Sustainable Boosting Algorithm for Thyroid Classification Systems   Order a copy of this article
    by V. Brindha, A. Muthukumaravel 
    Abstract: Medical professionals can use sophisticated technologies like computer-aided diagnosis systems to help them make the best decisions possible by using data mining to analyse clinical data. When the thyroid gland cannot produce adequate thyroid hormones, a potentially fatal condition known as thyroid disease develops; this research aims to predict thyroid disease from the given dataset. This study suggests using the Multilayer Perceptron (MLP) technique to identify thyroid disease using straightforward criteria. In order to get the most out of the algorithms, this study evaluated the suggested strategy with the XGBoost classification technique using the UCI thyroid disease dataset. The obtained findings demonstrate the MLP model's capacity to accurately and precisely predict the proper type of thyroid problem diagnosis. According to the results, the MLP algorithm surpasses the XGBoost method with accuracy and precision values of 93 percent and 89 percent, respectively. The tool used for analysing the work is Jupyter Notebook, and the language used is Python.
    Keywords: Thyroid disorder; XGBoost; Multilayer Perceptron; Endocrine; Hypothyroidism; Hormone; diagnose; antithyroid; Radial Basis Function; Back-propagation; Bagging; Ensemble.
    DOI: 10.1504/IJSSE.2024.10055910
  • Adaptive Artifact Canceller Filter Based on Penguins Search Optimisation Algorithm for ECG Signals   Order a copy of this article
    by Ishani Mishra, Sanjay Jain, Vivek Maik 
    Abstract: The electrocardiogram (ECG) signal is a collection of biopotentials related to the contractions of heart muscles which is used to diagnose cardiac abnormalities. The ECG signal is usually distorted by unwanted interference called noise or artifact. The removal of such noise is crucial to better analysis of ECG signals and crucial to better evaluation of the human cardiac system.Besides, the performance of the proposed scheme is compared with that of different existing filtering techniques such as bacterial foraging optimization-based AAC (BFO-AAC) and AAC. The comparative analysis shows that the proposed PeSOA-based AAC technique provides maximum SNR and minimum error compared to BFO-AAC and AAC in the average cases of a noisy environment. Namely, the SNR of PeSOA-AAC is increased to 63% and 98% than that of BFO-AAC and AAC respectively. This proposed noise canceller method supports the human cardiac system for analyzing the ECG signals preciously.
    Keywords: AAC; ECG signal; optimization algorithm; optimal weight value.
    DOI: 10.1504/IJSSE.2024.10055911
  • Hyper-Heuristic Glowworm Swarm Optimized Support Vector Machines for Heart and Thyroid Disease Classification   Order a copy of this article
    by G. Kiruthiga, S. Mary Vennila 
    Abstract: In order to improve illness detection accuracy and reduce complexity, this study seeks to construct sophisticated machine learning (ML) classifiers and effective feature selection (FS) methods. The proposed model includes two stages: classification using Hyper-heuristic Glow Worm Swarm Optimized Support Vector Machines and FS utilising Information Gain (IG) and Spotted Hyena Optimizer (IG-SHO) (HHGWSO-SVM). By removing the irrelevant characteristics with the IG metric, the dimensionality of attributes is decreased in the IG-SHO technique. By combining the hybrid optimization approach of HHGWSO with the SVM, the suggested HHGWSO-SVM classifier has been created. Its configuration has been improved by optimally setting the margin parameter, kernel type, and kernel parameters. The Hyper-heuristic algorithm and the Glowworm Swarm Optimization (HHGWSO) have been combined to create a method for fine-tuning SVM parameters based on accuracy and model complexity. The proposed HHGWSO-SVM model is tested in experiments on benchmark datasets to predict thyroid and heart illnesses. According to the results, the suggested categorization model has improved precision and accuracy while reducing model complexity.
    Keywords: Heart disease; thyroid disease; machine learning; FS; Information Gain; Spotted Hyena Optimizer; Hyper-heuristic Glowworm Swarm Optimization; Support Vector Machines.
    DOI: 10.1504/IJSSE.2024.10055912
  • Energy Competent Clustering Algorithm for Minimization of Holes in Heterogeneous Wireless Sensor Networks   Order a copy of this article
    by Chinmaya Kumar Nayak, Satyabrata Das 
    Abstract: A sensor network commonly referred as wireless sensor network (WSN) be made up of a large number of small-scale autonomous wireless sensor nodes. These sensor nodes are used to gather the desired information starting a target area. The power necessary for information communication is very high in comparison to computation due to long range radio transmission, resulting depletion of high amount of energy from the batteries of sensor nodes. It mainly creates the node destruction and hole formation. So it is necessary to design energy competent methods for such networks to enhance the lifespan of the Wireless Sensor Network. As a solution in this paper a protocol for heterogeneous network called Stable Election Protocol (SEP) implemented jointly through Low- Energy Adaptive Clustering Hierarchy (LEACH) for load complementary with increased amount of communication packets to the Base Station of the sensor network. This can be done by sharing the energy load uniformly with each and every sensor nodes in a heterogeneous network by selecting cluster heads.
    Keywords: Stable Election Protocol; WSN; Lifespan of Network; Power Efficiency; Cluster-Head.
    DOI: 10.1504/IJSSE.2024.10055955
  • Factors Affecting in Consciously Improving Vocabulary with a Spaced Repetition System   Order a copy of this article
    by Alamelu G, Ilankumaran M 
    Abstract: Language acquisition begins in childhood and continues until death. Many believe learning a second language is essential for career success. Because students rarely experience the target language in its natural situation, learning vocabulary, sentence structures, and pronunciation is difficult. These issues influence students and teachers. Thus, acquiring a second language and developing vocabulary are conscious choices that require continual education, evaluation, and feedback. Spaced cycles can be integrated into conventional teaching methods and improve learning by requiring more resources. The spaced repetition system (SRS) is an old method, but it works well for languages where vocabulary development is the major goal. Ebbinghaus (2013) is the only source of reliable data on the strategy, which dates back to the Vedic era in India. Leitner's flashcards help students learn a language by allowing regular study and improvement. Modern, high-tech vocabulary development tools are available. This study examines how engineering students might actively absorb terminology through spaced repetition.
    Keywords: Spaced Repetition System; intentional learning; learning vocabulary; heterogeneous; classrooms; enhancing language; reinforcement.
    DOI: 10.1504/IJSSE.2024.10055993
  • Secure Health Care Data Transaction Using Hybrid Attribute-Based Encryption with Access Control Policy on Cloud   Order a copy of this article
    by Vinoth Kumar, Amutha Raj 
    Abstract: Cloud computing environments are rapidly growing in healthcare, and security and confidentiality of medical records are a major concern. Increasingly, researchers and academics are paying attention to cloud-based medical data exchange. Even if medical data is not misused, it can be compromised or manipulated through the use of untrusted networks. So, in this paper, a hybrid cryptosystem is introduced to protect medical data that overcomes the limitations of existing cryptosystems. The proposed hybrid cryptosystem is called HABE which is a combination of cipher policy attribute-based encryption (CP-ABE) and Elliptical curve cryptography (ECC). This method ensures the overall security of the sensor data, which guarantees confidentiality and integrity. Besides, the proposed system gives effective privacy with access control for user access according to trust-based data level access control (TDLA). Based on the TDLA, user access to the cloud environment is restricted. The effectiveness of the presented technique is evaluated based on Encryption time, decryption time, security level, throughput, and Time complexity.
    Keywords: Cloud computing; CP-ABE; ECC; TDLA.
    DOI: 10.1504/IJSSE.2024.10056046
  • Efficient Deep Transfer Learning based COVID-19 Detection and Classification using CT Images   Order a copy of this article
    by Prabakaran G, Jayanthi K 
    Abstract: This article develops an Intelligent Deep Transfer Learning Driven COVID-19 Detection and Classification Model using CT images. The major aim of the IDTLD-CDCM model is to identify appropriate class labels for the CT images. The IDTLD-CDCM model undergoes initial pre-processing in two levels namely spline adaptive filtering (SAF) based noise removal and contrast enhancement. In addition, the IDTLD-CDCM model involves SqueezeNet as a feature extractor for deriving a useful set of feature vectors. Furthermore, the hop field neural network (HFNN) model is utilized for the classifier of COVID-19 and Non-COVID-19 images. Furthermore, the parameter tuning of the HFNN model is carried out by the use of root mean square propagation (RMSProp). For investigative the improved outcomes of IDTLD-CDCM approach, a series of simulations are executed and the outcomes are inspected in several aspects. The simulation outcome demonstrated the improved outcomes of IDTLD-CDCM approach over the recent approaches.
    Keywords: COVID-19; Deep transfer learning; Computed tomography images; Medical imaging; Decision making; Machine learning.
    DOI: 10.1504/IJSSE.2024.10056102
  • Biocybersecurity and Applications of Predictive Physiological Modeling   Order a copy of this article
    by Lucas Potter, Sachin Shetty, Saltuk Karahan, Xavier-Lewis Palmer 
    Abstract: In the scientific world, models are useful abstractions and sets of rules that can be utilized to predict hypothetical events. One's first exposure to models is likely in primary science education - models of gravity or chemical interaction. As computational power increases, the availability of models for different purposes continues to grow. For instance, models of climate and weather are more accurate than before. This growth has also grown to encompass the field of medicine. There is now an increasing number of computational models that describe the physiology of a given patient with great accuracy and interaction. The development of these models is a boon to the medical training field and is typically the reason for most of the development of these models. These models could be used to design a customised, multivariate biological threat. This threat would be entirely hypothetical if the medical training models were a singular development. However, the independent rise of low-cost, semi-autonomous biological manipulators gives this hypothetical threat very practicable teeth to combine high-resolution computational data with designer bioagents to deliver the optimal biological agent for a threat. This paper attempts to spur conversation based on the exploration of this distinct possibility and scenarios derived from the ideas proposed within the models described below.
    Keywords: Biocybersecurity; Cyberbiosecurity; Predictive; Physiological Modeling; Machine Learning; Deep Learning; Artificial Intelligence; Biodefense; Models; Bioweapons.
    DOI: 10.1504/IJSSE.2024.10056103
  • Strengths of Computational Systems of Techniques Using Artificial Intelligence in Machine Learning   Order a copy of this article
    by Shashikant V. Athawale, Indrajit Patra, Amol Dattatray Dhaygude, Vaibhav Rupapara, Thanwamas Kassanuk, Khongdet Phasinam 
    Abstract: As a result of technology improvements, engaging and interactive commercials frequently use short messaging services. One of the most well-known cell advertising strategies is location-based advertising. Advertisements for artificially enhanced location-based services use randomised forests, support vector machines, and synthetic neural networks. It appears sufficient for generic structures, development tools, and other field implementations. Machine learning employs algorithms and data to simulate realistic computer learning and enhance system accuracy. Machine learning algorithms can predict friction force and equipment wear to extend dry machining drill bit life. Modern cognitive computing frameworks enable optimised conventional machining process variables to increase component production productivity. Machine learning systems can predict and improve product quality to improve machine precision. Machine learning is used in self-driving cars, intelligent assistants, diagnosis, and other technologies. Machine learning predicts industrial equipment power demand and reduces milling power consumption. Future research should summarise the latest milling operations investigations on these topics. Machine tools use natural and artificial information systems in this investigation.
    Keywords: Utilization; methods; Machine learning; Instruction; Decision-making; Artificial intelligence; Machine tools; Computational Systems of Techniques.
    DOI: 10.1504/IJSSE.2024.10057269
  • Brain Tumor Detection Systems Based on Histopathological Image Analysis Using Segmentation and Classification by Deep Learning Architectures   Order a copy of this article
    by Abdullah Alamoudi 
    Abstract: The human brain has billions of cells and is one of the body’s most complicated organs. This research proposes a novel technique in histopathological image analysis for detecting brain tumor by segmentation with classification utilizing deep learning (DL)methods. Input images have been taken as histopathological images and processed for noise removal, smoothening, and normalization using Adaptive median filtering and Macheno-Stain Normalization. Then the processed image was segmented utilizing an active contour-based Kernel k-means clustering operation where the tumor region has been segmented, and this segmented part has been classified. The classification has been carried out using Boltzmann Q- learning with a convolutional network, where the exact tumor region has been classified, and its volume has been analyzed. Experimental analysis is carried out for various histopathological brain images for the proposed technique compared to the existing technique. the parameters compared are accuracy of 96%, sensitivity of 91%, specificity of 86%, coefficient of dice of 85%, Jaccards coefficient of 96%, spatial overlap of 68%, AVME of 53%, and FoM of 63%.
    Keywords: Brain Tumor; Segmentation; Classification; Histopathological Image Analysis; Deep Learning.
    DOI: 10.1504/IJSSE.2024.10057475
  • Spark Framework-Based Crop Yield Prediction Using KR-PEclat And Mish-ANFIS-GRU Technique   Order a copy of this article
    by Anupama C.G, Lakshmi C 
    Abstract: Recent advancements have made tremendous development in various fields including the agricultural sector. Existing research methodologies predicted the crop yield only based on the soil and weather conditions which in turn degraded the efficiency of the crop yield prediction. Hence, an efficient Mish-ANFIS-GRU and DI-LDA-based crop yield prediction methodology is proposed. Initially, the data obtained from the historical dataset is pre-processed and data partitioning is performed using the KR-PEclat algorithm. The partitioned data is then fed into the spark framework. Then, data balancing is done using SMOTE technique to obtain the highest matching data. Next, features are extracted from the balanced data followed by the DI-LDA-based feature reduction process. The reduced features are then fed into the Mish-ANFIS-GRU classifier. Now, when the farmer enters the condition for predicting the yield of the particular crop, feature mapping is performed to provide a better prediction of the crop yield.
    Keywords: Imputation; Gated Recurrent Unit(GRU); Linear Discriminant analysis(LDA); Adaptive Neuro Fuzzy Interference System(ANFIS); Synthetic Minority Oversampling Technique (SMOTE).
    DOI: 10.1504/IJSSE.2024.10057480
  • An efficient Smart Container Design Using Internet of Things and Its Applications   Order a copy of this article
    by Umamaheswari K.M, Muthu Kumaran A.M.J, Shobana J, Dorathi Jeyaseeli J.D, Sivasankari K, Safa M 
    Abstract: In the modern era where technology is deeply rooted in ones daily life, the dependence on machines increases. A technology where we define relationships between different objects, devices or components is one such example of the Internet of Things (IoT). However, we must also consider solutions for integrating objects and devices before the concept of IoT emerges. For this reason, the proposed work aims to develop a low-cost smart container that informs us about the amount of products, regardless of the type of material, stored inside the container. It also assesses essential features that can be used for research, such as the internal temperature and humidity of the material stored inside the container. Additionally, a system-defined shopping list can be prepared and items can be added to the shopping list if the quantity of products falls below a user-defined threshold value.
    Keywords: Smart Container; temperature; application; humidity; object.
    DOI: 10.1504/IJSSE.2024.10057936
  • Bidirectional LSTM and Self-Attention Mechanisms based Multi-Label Sentiment Analysis   Order a copy of this article
    by Aruna A.R 
    Abstract: This study proposes the implementation of a novel optimization-depend on deep learning algorithm for Multi-Label Sentiment Analysis (MLSA). The goal of the algorithm is to improve the accuracy of sentiment analysis, particularly in the context of e-commerce-related applications. This technique effectively categorize the text data into multiple sentiment classes, such as positive, negative, neutral, or other emotions, and to determine the overall sentiment expressed in a given text document. The challenge of MLSA on e-commerce data lies in the informal and often cryptic nature of the text, which can make sentiment analysis difficult. To address this, a novel optimization-empowered Bidirectional Long-Short Term Memory (Bi-LSTM) system with Self-Attention Mechanisms is proposed in this research work. It uses the Bi-LSTM network to capture the sequential relationships between words in the manuscript and the self-attention mechanism to dynamically weigh the importance of different words in determining the overall sentiment expressed in the text
    Keywords: Self-attention; Bi-Directional Long Short-Term Memory; Multi-Label Sentimental Analysis; Deep Learning; Sentimental Analysis; Natural Language Processing.
    DOI: 10.1504/IJSSE.2025.10059046
  • Automatic Music Generation Using Bio-Inspired Algorithm Based Deep Learning Model   Order a copy of this article
    by V.Bhuvana Kumar, M. Kathiravan 
    Abstract: In recent years, automatic music generation plays vital role to get multimedia products cheaper and faster. For automatic music generation, both machine learning and deep learning methods were presented. The researchers, in particular, have used long short term memory (LSTM). Although the LSTM model produces better results, its prediction accuracy for music generation needs to be improved further. Thus, an optimized LSTM model is presented for automatic music generation. Namely, to improve the efficiency of LSTM, adaptive crocodile optimization algorithm (ACOA) is presented. Using ACOA, weight parameters of the LSTM are optimized. It leads to enhance the efficiency of music generation or music vector prediction. The proposed scheme is evaluated using classical music MIDI dataset. The article's findings show that the proposed ACOA-LSTM outperforms the conventional LSTM in prediction accuracy.
    Keywords: Automatic music generation; LSTM; ACOA; MIDI.
    DOI: 10.1504/IJSSE.2024.10058092
  • Security and Data Privacy Systems Concerns in IoT Using Consensus Algorithm   Order a copy of this article
    by Maria Michael Visuwasam L, Sheetal Vishal Deshmukh, N.R.Rejin Paul, M.Arun Manicka Raja, Kanimozhi S, Anuradha Thakare 
    Abstract: The most recent technology to emerge as a result of the quick development of smart devices and related technologies from both an industry and research standpoint is the Internet of Things (IoT). IoT techniques are used in the development of apps for real-time monitoring. Smart things are vulnerable to attacks due to their insufficient processing and storage capacities and the ineffectiveness of current security and encryption techniques. The first step was an investigation and analysis of the study's system to identify any potential breaches in confidentiality or security. Second, several security options are provided by blockchain technology. The intricacies of the analysis, such as the incorporation of enabling technologies and the Internet of Things, are broken down in great detail. After that, the results of a sample experiment utilising a blockchain-driven Ethereum and an intelligent IoT system are shown to the audience.
    Keywords: IoT; smart IoT; Block Networks; Security; Privacy Systems; Cryptography Technique.
    DOI: 10.1504/IJSSE.2024.10058093
  • Green TiO2 Nanoparticle to Boost the Performance of current Solar Panels   Order a copy of this article
    by Snehal Marathe, B.P. Patil, Shobha Ajeet Waghmode, Trupti Sakharam Zaware 
    Abstract: There are several ways to increase the production of the solar panels, such employing solar trackers for the panels and automatic cleaning systems. Last but not least, using an antireflective coating has become more important for improving solar panel efficiency because the majority of sunlight that hits them is reflected back into the atmosphere. To improve the material efficiency, titanium dioxide (TiO2) nanocomposite material with green production process is applied. The most prevalent substance on Earth is TiO2, which has unique characteristics as well as increased a high refractive index (n = 2.4). TiO2 nanoparticles are manufactured by a 90% natural process called green synthesis using natural resources like roots, flowers, petals, fruit peels, or leaves. Here, the coating is made using flower petals, a natural material. In comparison to an untreated panel, the power output was improved by an average of 1 watt by spraying this coating on.
    Keywords: Solar Energy; Solar Panel; Titanium Dioxide; Nanomaterials; Nanoparticle; Efficiency; Characteristics.
    DOI: 10.1504/IJSSE.2024.10058116
  • An Enhanced Multi-Kernel Based Extreme Learning Machine Model for Crop Yield Prediction in IoT-Based Smart Agriculture   Order a copy of this article
    by Yogomaya Mohapatra, Anil Kumar Mishra 
    Abstract: Smart agriculture is a terrific approach to boost agricultural output and boost farm productivity, whereas the Internet of Things (IoT) provides production and control facilities with intelligent navigation. Large-scale physical surveys and the use of remote sensing data are two approaches that are widely used for crop prediction. Due to the growing volume of data generated by remote sensing images and the requirement for more sophisticated algorithms to identify the underlying spatiotemporal patterns of this data, this approach is essential for the issue of forecasting agricultural yields. Despite the fact that this field has made great strides owing to machine learning techniques. Here, we suggested a machine learning-based automated prediction approach. The crop production can be accurately predicted by the suggested optimized Multi-Kernel Based Extreme Learning Machine model. By employing the adaptive rat optimization technique to optimize the kernel parameters of kernel functions, the performance of the Multi-Kernel Based Extreme Learning Machine is improved in this detection model. The recommended OMK-ELM model can detect crop yield output in IoT agriculture with a maximum accuracy of 98.462%, precision of 93.627%, and recall of 99.721%, according to testing results.
    Keywords: Crop Yield Prediction; Extreme Learning Machine; IoT; OMK-ELM; Adaptive Rat Optimization Algorithm; Machine Learning.
    DOI: 10.1504/IJSSE.2024.10058117
  • Energy Aware Optimisation of Topology Update Interval and Routing Based On Adaptive Chimp Optimization Algorithm in k-Connected MANETs   Order a copy of this article
    by Shyam Sundar Agrawal, Rakesh Rathi 
    Abstract: In k-connected Mobile Ad-hoc Network (MANET), topology control algorithm plays an important role to support efficient routing. However, due to node mobility and direction changes, the network topology struggles to find it hard to maintain the network connected.To solve this issue, topology update interval (TUI) and topology of each node in the network should be optimized. Thus, in this paper, three phases are followed to enhance the energy efficiency of the network. To determine the best TUI for each node, the minimal power consumption and remaining time of nearby nodes are first calculated. Second, the optimal topology is selected within the optimal TUI by calculating the topology's minimum cumulative power consumption. At the final, the adaptive chimp optimization algorithm selects the optimal routing path from among these connected topologies (ACOA). According to the study's findings, the suggested strategies improve delivery ratios, throughput, connectivity, and energy expansion.
    Keywords: MANET; TUI; ACOA; topology control algorithm; connectivity ratio.
    DOI: 10.1504/IJSSE.2024.10058118
  • Compact microstrip patch antenna design using Deep belief neural network for wireless application   Order a copy of this article
    by Sandhya Rani Sriram, Kumar Naik Ketavath 
    Abstract: This paper presents a deep belief neural network (DBN) to design an inset-fed E-shaped microstrip patch antenna. To design the shape of such an antenna, a DBN is proposed. This article is presented to design of a compact patch microstrip antenna with an operating frequency of 0.75 to 2.24 GHz and 3 to 3.46 GHz. The upper and lower notches maintain the same dimensions throughout the design process. Notch length and width are set for the investigation purpose. The proposed work utilizes the optimal DBNN model for the designing of the antenna in terms of area and therein significantly maximizes the bandwidth usage and is also used for simulation purposes. The outcomes are analyzed and compared with state-of-art works and show our proposed approach shows the reduced area with the maximized bandwidth usage.
    Keywords: Microstrip patch antenna; E-shaped microstrip patch antenna; Deep belief neural network; Bandwidth and Area.
    DOI: 10.1504/IJSSE.2025.10058886
  • Development of Detection & Recognition of Human Activity in Sports using GMM and CNN algorithms   Order a copy of this article
    by Dhivya Karunya S, Krishna Kumar 
    Abstract: The system offers a comprehensive mechanism for tracking several individuals and measuring their combined actions. Our method assumes that a person's mobility, activity, and neighbouring people's motions and behaviours are meaningfully interconnected. We propose a hierarchy of activity types to allow a more natural transition from solo mobility to communal motion. The approach provides a two-tiered hierarchical graphical model to learn the spatial and temporal links between tracks, tracks, and activity segments. We also propose combining conviction engendering with a branch and bound methodology modified with whole number programming to solve this intractable joint inference problem. This work uses motion and context data to jointly model and detect associated movie actions. The realisation that geographically and temporally related events rarely happen separately and often serve as backdrops prompted this. A hierarchical two-layer conditional random field model represents action segments and activities. The model integrates motion and backdrop variables at numerous levels and generates statistics that automatically identify typical patterns.
    Keywords: CNN; GMM; Sports Activity; Medicine; Athletics; Entertainment Business; Machine Learning; Human Activity in Sports.
    DOI: 10.1504/IJSSE.2024.10058138
  • A Comprehensive Review of Various MLI Topologies to Minimize the THDs for FACTS Applications   Order a copy of this article
    by B. Thejasvi, P. Vijayapriya 
    Abstract: In modern days, multilevel inverters (MLIs), which are becoming a feasible technology for a number of applications, particularly FACTS applications, have gained increased attention in research and industry. MLI has a harmonic problem which has a negative impact on some applications, such as producing torque pulsing in grid-connected electric drives, shortening system lifespan and deteriorating efficiency. To solve these issues the different MLI topologies have been investigated. Hence, the various types of MLI topologies tabulated. Not only are these setups achieving higher performance to enhance power quality, but they are also lowering losses. This review also offers a thorough analysis of MLI topologies' various modulation methods and control schemes. Comparison based on significant performance metrics, specific technological difficulties, and future directions is also included in this review study.
    Keywords: FACTS; MLI; Total Harmonic Distortion (THD); Cascaded H-Bridge MLIs (CHB MLI) and Reduced Switch Symmetric H-Bridge Type MLI (RSS MLI).
    DOI: 10.1504/IJSSE.2024.10058155
  • Load Balancing in Cloud Computing Systems Using Density Based Clustering Approach   Order a copy of this article
    by Pearly Charles, Vimala S 
    Abstract: Cloud computing, which uses clustering to load balance, is the current paradigm for providing ultimate services to society via the internet. This technology delivers all PAYG services. Privacy, security, reliability, and other problems offset infrastructure, platform, and software gains. Load balancing improves dispersed environments. Recent research prevents VM under- and over-loading. This research uses a density-based clustering-derived LB method. The turn around time (TAT) is much lower than K-Means. K-Means and DBSCAN cloud load balance. Clustering balances server loads. Similar queries let server clusters share the load. System performance, reaction time, and downtime improve the traditional load balancing works well. Round-robin sequence requests among servers. Cluster servers share the load. The least-connections approach sends requests to the server with the fewest active connections, ensuring each server has a similar capacity. Clustering load balances in real time. Clustering algorithms transfer groupings to other servers to balance demand. K-Means takes 269.875ms longer than anticipated.
    Keywords: Load Balancing; Turn Around Time (TAT); Virtual Machine (VM); Cloud Lets; Cloud Sim; Clustering Approach.
    DOI: 10.1504/IJSSE.2024.10058171
  • Predicting Consumer's Intention of Biological Products Using E-Commerce Data   Order a copy of this article
    by Kaliraj S, Raghavendra S, Femilda Josephin J.S, Sivakumar V, Karthick K 
    Abstract: Digitalization has evolved as a boon to the e-commerce market. Biological products and organic products also target e-commerce platforms to increase their business. E-commerce has the upper hand over traditional marketing practices due to its adequate accessibility and usability. The research revolves around consumers' opinions in the form of ratings and the idea that the products sold on E-Commerce platforms correlate with the product's rating and features like brand, price, etc. This lets the practitioners predict the consumers' intention by predicting the possible rating. There are many approaches available to predict consumer intention based on e-commerce data. In this paper, we have evaluated the performance of all the machine learning classification algorithms. All of these are used in our proposed structure to predict consumer intention on a product. Here we trained machine learning algorithms using an extracted dataset for forecasting biological product ratings based on other product features. Performance of different machine learning algorithms on e-commerce data discussed using metrics.
    Keywords: Supervised machine learning; consumer behavior; classification algorithms; e-commerce biological product; deep learning.
    DOI: 10.1504/IJSSE.2025.10059048
  • An EFSM-based Model for Testing Security Issues in Hadoop Ecosystem   Order a copy of this article
    by Oussama Maakoul, Lalla Amina Charaf, Widad Zerzzari., Abdessalam Ait Madi, Salma Azzouzi, Moulay El Hassan Charaf 
    Abstract: Today, the Hadoop infrastructure can be affected by several forms of attacks on public or hybrid clouds. In this work, we propose a comprehensive security scheme based on Kerberos and Adaptive XACML (eXtensible Access Control Markup Language) by considering some timing constraints. In a related context, the appropriate approach to check the vulnerability of a Hadoop Implementation is to perform tests according to predefined specifications. Therefore, the second contribution is to model the security system specifications using an Extended Finite State Machine and to propose an architecture to handle the Hadoop testing process. Furthermore, we provide an algorithm to generate secure local test sequences that describe the test execution at each port of the system. Finally, experimental results come along to validate our scheme on a healthcare system. As a result, we notice a remarkable time decrease in access requests processing with a performance improvement using the new time-constrained approach.
    Keywords: EFSM; Hadoop; MapReduce; HDFS; XACML; Distributed Test; Access control list.
    DOI: 10.1504/IJSSE.2024.10058212
  • Cardiovascular disease prediction using Hybridization multi perception classifier in secure IoT platform
    by Safa M, Pandian A, Chakrapani K, Karpaga Selvi, Kempanna M, Arun D, Umamaheswari K.M 
    Abstract: The primary purpose of this study is to propose a hybrid fuzzy-based decision tree method for early heart attack prediction using a continuous and remote patient monitoring system. The first planned goal is to create an IoT system that detects an individual's level of stress and uses the information gathered through sensor-linked IoT to help individuals cope with stress. The sensory system detects and monitors other proposed data sets for heart disease patients involved in temperature, blood pressure, pulse oximetry, and stress. The IoT Edge intelligence device senses signals from sensors. It manages and monitors output using the MQTT protocol. The IoT Hub, in collaboration with large-scale devices, generates analytical cardiovascular predictions using streaming analysis and real-time data processing in this suggested system. Predictive models for stress analysis are designed using machine learning methods.
    Keywords: Cardiac disease prediction; big data analysis; HMPC; CHD; Stress; Sensors.
    DOI: 10.1504/IJSSE.2025.10058918
  • A novel approach for Enhancing Mammographic Images   Order a copy of this article
    by Richa Sharma, Amit Kamra 
    Abstract: A severe health problem impacting many ladies worldwide is mammary calcinoma In order to reduce the risk factor connected with the disease,pre-clinical identification of breast cancer is essential,and mammography is one of the finest screening methods Mammogram quality and radiologists' ability to correctly interpret them are crucial for early cancer diagnosis In this study work,we propose a brand-new method for improving poor-quality mammography pictures Contrast Limited Adaptive Histogram Equalisation (CLAHE)and Morphological Operations(MOs)are two image processing methods we recommend using The suggested technique tries to increase the pictures' clarity and sharpness,which may help in the early identification and diagnosis of breast cancer The median filter,Low Pass Gaussian filtering,Morphological Operations(MOs),and Wavelet Decomposition are the next steps in the suggested technique after removing noise.The combination of these two approaches will increase the efficiency of mammographic image enhancement,according to our studies,which show a considerable improvement in picture quality compared to CLAHE and MOs.
    Keywords: CLAHE; Guided Image Filtering; mammograms,Morphological operations; Medical Image Processing.
    DOI: 10.1504/IJSSE.2025.10058950
  • A Fuzzy Inference System Confidence Dynamic Concept Simulated Annealing Strategy for Wireless Sensor Networks   Order a copy of this article
    by Selvamani K, Kanimozhi S, N.R.Rejin Paul, M.Arun Manicka Raja, Venkatasubramanian S, Anuradha Thakare 
    Abstract: Scientific study has focused on extending the lifespan of wireless sensor networks, a cost-effective technique to collect data from a specific area. Previous studies offered a low-energy heterogeneous wireless sensor network routing technique. Few writers proposed the algorithm for finding and calculating critical node linkages. Installing more mobile nodes improved WSN's topological connection earlier. Path design was also proposed to maximise longevity and decrease connected key node effects. Some geo-cast methods used hop-to-hop neighbour data. Dynamic resource routing for wireless sensor networks is advocated using an FIS and area segmentation. Thus, correct device data flow saves energy and prolongs channel life. This work introduces geographic routing. Fuzzy logic determines neural source coordinates, and weighted centroid identification is suggested. A wireless fuzz version measures flow to determine anchor-edge device distance. It decreases localised standard errors and node placement errors. Second, boost messages to the next bounce member nodes with the latest version. Smart next-hop selection reduces node energy usage and extends network lifetime. The suggested thing outperforms existing ways in power utilisation, completion time, and location errors, according to simulations.
    Keywords: Wireless Sensor Network; Internet of Things (IoT); Segmentation; Classification; Communication; Fuzzy Logic; Fuzzy Inference System (FIS),.
    DOI: 10.1504/IJSSE.2025.10059049
  • Ensemble Regression Model-Based Missing Not at Random Type Missing Data Imputation on the Internet of Medical Things   Order a copy of this article
    by Iris Punitha P, J.G.R. Sathiaseelan 
    Abstract: The Internet of Medical Things (IoMT) combines IoT and health sensing technologies, which allow for the early detection of various health issues. However, the data generated from IoMT devices may contain missing values or corrupted data, particularly when the missing data is of the missing not-at-random (MNAR) type. Existing solutions for imputing missing data in IoMT have limitations such as low accuracy and high computational cost. To overcome these limitations, this paper proposes an ensemble regression model (ERM) based on MNAR-type missing data progressive imputation (MDPI). The ERM-MDPI model combines three regression models, namely Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Linear Regression (LR), to improve the accuracy of imputed missing data in the cStick dataset. The experimental results demonstrate that the ERM-MDPI model-based cStick imputed dataset generated higher accuracy (93.6301%), precision (91.0385%), recall (87.0898%) and F-measure (89.0204%) than cStick missing dataset. Therefore, the proposed solution offers an efficient and accurate approach to impute MNAR-type missing data in IoMT, providing valuable insights for medical decision-making.
    Keywords: The Internet of Medical Things (IoMT); Missing not-at-random (MNAR) data; Ensemble regression model (ERM); Progressive imputation; Medical decision-making.
    DOI: 10.1504/IJSSE.2024.10058313
  • Application of Deep Convolutional Neural Networks Systems in Autonomous Vehicles   Order a copy of this article
    by Souvik Ganguli, Charu Virmani, Vrince Vimal, Gunjan Chhabra, Garima Sinha, Bobur Sobirov 
    Abstract: The currently available sensor on those self-driving automobiles does a poor job of detecting the state of the road ahead of them. However, daytime and nighttime weather-related road conditions require safe driving. Deep learning study for daytime roadway identification uses data from a vehicle sensor. An overview of the use of deep convolutional neural networks in autonomous cars is given in this article. The paper starts by going through the difficulties of creating autonomous vehicles and how CNNs can be utilised to overcome these difficulties. The author thoroughly explains the basis of CNN and how it may be used for tasks like object detection, lane finding, and recognition of traffic signals. The research also examines how CNN focus techniques and transfer learning can be applied to autonomous vehicles. The authors conclude by highlighting the limits of current CNNs in this field and suggesting future research. This review article gives academic scholars and industry experts a current overview of CNNs in cars.
    Keywords: Application; Deep Convolutional Neural Networks Systems; Autonomous Vehicles; Convolutional Layers; Convolutional Neural Networks (CNNs).
    DOI: 10.1504/IJSSE.2025.10059050
  • A Collaborative Approach for Testing MapReduce Access Control Issues using Agent-based Architecture   Order a copy of this article
    by Sara Hsaini, Mohammed Amine Tajioue, Salma Azzouzi, Moulay El Hassan Charaf 
    Abstract: Security mechanisms such as access control are of the utmost importance. There have been a number of applications where it has been used to control the actions performed on resources by system users. In this study, a novel approach to testing access control list (ACL) policies based on the analysis of access control responses is presented. The main objective is to verify that the policies meet the XACML language specifications. As part of addressing the issue in a practical manner, we propose an Agent-based architecture for testing access control of a MapReduce application in a multi-node Hadoop cluster. The methodology is then tested and validated through an "inverted index" case study.
    Keywords: Access Control; Distributed Testing; MapReduce; Security; XACML; Multi-Agents System.
    DOI: 10.1504/IJSSE.2025.10059051
  • Detection of Node isolation attack using DNC mechanism in D2D Networks   Order a copy of this article
    by Balaji V, Selvaraj P 
    Abstract: Device to Device (D2D) network is a powerful technology that enables D2D communication without additional infrastructure support. There is no authentication procedure in the D2D routing protocol. As a result, it is a very desirable target for attackers and is exposed to several vulnerabilities, including node isolation attacks during sessions. To avoid this problem, a novel Denial of Node Contradiction (DNC) with OLSR is proposed. According to the simulation results, the proposed DNC-OLSR algorithm outperforms the alternatives in terms of the rate at which packets are forwarded, indicating that the proposed routing path is more stable than those of the Destination Sequenced Distance Vector (DSDV), Ad-hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) protocols. However, the DNC-OLSR algorithm is relatively low compared to the other three algorithmic measures of packet loss and the resulting delay. Moreover, the proposed algorithm can provide more reliability and stability for D2D communication.
    Keywords: IoT; D2D; Security Issues; OLSR; AODV; DSR; DSDV.
    DOI: 10.1504/IJSSE.2025.10059052
  • Deep Convolutional Neural Networks based Cervical Cancer Detection and Classification   Order a copy of this article
    by Suguna C, Balamurugan S.P 
    Abstract: Cervical cancer (CC) is a major reason of death in cancer in women. The problem of this cancer is limited once it can be analyzed and preserved at the initial phase. With the progress of artificial intelligence (AI) technology, computer aided diagnosis (CAD) is developed most leading investigation topics of medicinal imaging during recent decades. This study develops a Computer Aided Diagnosis Model for Cervical Cancer Classification using Deep Learning (CADC3-DL) model. The presented CADC3-DL model aims to recognize the occurrence of CC on biomedical images. Initially, the CADC3-DL technique creates a mask from the input dataset. Next, the pre-processing step takes place in two levels namely Gaussian filtering (GF) based noise removal and CLAHE based contrast enhancement. Then, the CADC3-DL technique employs customized U-Net segmentation technique where the filter size in the traditional U-Net is replaced by batch normalization (BN) to accomplish enhanced classification accuracy.
    Keywords: Biomedical imaging; Cervical cancer; Deep learning; Computer aided diagnosis; Batch normalization.
    DOI: 10.1504/IJSSE.2025.10059072
  • Study and analysis of Data Anonymization Techniques for Social Networks   Order a copy of this article
    by Sivasankari K, Umamaheswari K.M 
    Abstract: Many people all across the globe have been utilizing social media to exchange information. Numerous firms apply social data mining to extract numerous excit-ing insights from social data which is represented as a sophisticated network structure. However, publishing social data has a direct and indirect influence on the privacy of many of its users. Recently, numerous anonymization methods have been invented and deployed to preserve sensitive information about users and their interactions on social media. This paper presents a complete assessment of several data anonymization algorithms for social network data and evaluates their pros and downsides. It also tackles the primary research problems surround-ing the effectiveness of anonymization technologies.
    Keywords: Data Anonymization; social networks; graph modification; machine learning.
    DOI: 10.1504/IJSSE.2024.10058376
  • Monitoring and Actuating Devices for Analysis of The New Security Protocols of Internet of Things   Order a copy of this article
    by A. Anandhavalli, A. Bhuvaneswari 
    Abstract: The Internet is ubiquitous and significantly influences contemporary life. A network of countless individually distinguishable, connected, and physically reachable things makes up the Internet of Things (IoT). The Internet of Things can be sensed, communicated with, and controlled by any physical object that can function as a computational device. Internet of Things, cloud computing, and pervasive computing affect corporate and software industries. Software companies must modernise their business models to compete. Data increases as devices connect. This data transformation can happen between devices, devices and humans, and between devices and businesses. Data fabrication, server and network manipulation, and serious ramifications for application platforms and networks could all result from this. The dangers and shortcomings of these technologies have increased due to their increased use in daily life. This study covers IoT basics, challenges, and security. Standardization is unattainable since so many devices are connected heterogeneously across platforms and networking protocols. Academics can now study the IoT's architectures, designs, applications, new security risks, and challenges.
    Keywords: Internet of Things (IoT); Lightweight Local Automation Protocol (LLAP); MQTT (Message Queue Telemetry Transport); Quick UDP Internet Connections (QUIC); User datagram protocol (UDP); Zigbee; Bluetooth.
    DOI: 10.1504/IJSSE.2024.10058411
  • Adaptive cat optimization with Attention based bi-LSTM for automatic software bug detection   Order a copy of this article
    by Muthu Kumaran A.M.J, Umamaheswari K.M 
    Abstract: The detection of software bugs is a critical issue in the software maintenance and development process because it is connected to all software successes. Therefore, earlier software bug detection is essential for improving software's efficiency, dependability, quality, and cost. Furthermore, accurate software bug prediction is a critical and challenging task. This article thus develops the effective software bug prediction model. The pre-processing, feature selection, and bug detection phases of the proposed model are the most important ones. The input bug dataset is initially pre-processed. Remove instances of duplicate data from the dataset during pre-processing. The feature selection is carried out by the Adaptive Cat Swam Optimization Algorithm (ACS) following the pre-processing step. At last, the proposed approach uses a Bi-long transient memory (Bi-LSTM) for bug expectation. Bug prediction is done with the promise and the NASA dataset. Based on accuracy, the proposed model performs better than the simulation results.
    Keywords: bug prediction; Bi-long short-term memory (Bi-LSTM); Cat Swam Optimization; feature selection.
    DOI: 10.1504/IJSSE.2025.10059053
  • Firefly Cyclic Golden Jackal Optimization Algorithm with Wavelet Artificial Neural Network for Blackmailing Attack Detection in Mobile Ad-hoc Network   Order a copy of this article
    by Parameshwar G, N.V.Koteswara Rao, Nirmala Devi L 
    Abstract: Wireless networks called mobile ad hoc networks (MANETs) have an enlarged number of peer nodes. In recent studies, the major challenges are poor false positive rate, minimum detection rate and energy efficiency with higher delay to enhance the security of MANET. To overcome the problem, in this work, the fuzzy clustering model forms the clusters in MANET. The most appropriate cluster heads are selected in the presence of the Firefly Cyclic Golden Jackal Optimization (FCGJO) algorithm thereby solving the issues of energy and mobility of nodes. Wavelet Artificial Neural Network model to detect a blackmailing attack in MANET. The NS-2 simulation tool handles the implementation works and the statistical parameters such as attack detection rate, delay, energy consumption, throughput, memory consumption and etc to compute the performance of proposed approaches. While comparing to the state-of-art studies, the statistical parametric results reveal the proposed intrusion detection performance.
    Keywords: MANET; Firefly Cyclic Golden Jackal Optimization; Fuzzy clustering model; Blackmailing attack and Wavelet Artificial Neural Network.
    DOI: 10.1504/IJSSE.2025.10058971
  • A Novel Architecture for Diabetic and Glaucoma Detection using Multi-Layer Convolutional Neural Network System   Order a copy of this article
    by Neha Sewal, Charu Virmani 
    Abstract: The proposed effort aims to develop a more predictive model for identifying Diabetic Retinopathy (DR) and Glaucoma, two major retinal illnesses that cause blindness in working-age individuals globally. Colour retinal photographs are challenging and time-consuming to diagnose DR and Glaucoma. A multilayer CNN model identifies DR and Glaucoma. The CNN-based network has special upgrades and features to boost diagnosis accuracy. The model can better capture retinal picture subtleties by adding data, improving diagnostic performance. 3658 retinal pictures in five categories are used for the DR problem from the Kaggle dataset. With 1103 retinal pictures and two class labels, RIGA is used for Glaucoma. Using these datasets, the proposed technique easily identifies healthy and diseased retinal pictures, reducing physician evaluations. Using two publicly available datasets, the suggested model had a prediction accuracy of 98%. These measures demonstrate the model's capacity to classify retinal pictures and detect DR and Glaucoma. Finally, data-augmented multilayer CNN models improve DR and glaucoma diagnosis. Accuracy comes from detail and large datasets. Data augmentation and multilayer CNN models improved it. The model may detect and treat severe retinal problems earlier.
    Keywords: Diabetic Retinopathy; Kaggle; Deep Learning; Convolutional Neural Network; Glaucoma; RIGA Dataset; Multi-Layer CNN; Augmentation Techniques,.
    DOI: 10.1504/IJSSE.2025.10059054
  • An Optimal Insider-Threats Detection Model Based on Improved Deep Belief Network with Feature Reduction Scheme for E-Healthcare System   Order a copy of this article
    by M. Madhavi, T. Sasirooba, G.Kranthi Kumar 
    Abstract: An EHR (Electronic Health Records) dataset contains routine actions performed when accessing a patient's record,such asassessment form history,pharmacy orders, etc These actions differ depending on the medical practitioner and the access period Leakage of valuable information is a critical challenge As the Internet-of-Things(IoT)evolves,new security challenges arise in existing security architectures An organization's insider threat management is at risk because attack surfaces have expanded dramatically To solve the above challenges,In this work,an Optimized Deep belief network(DBN)is proposed to detect insider threats in EHR Significant features are generated using correlation coefficients, random forest mean reduced accuracy, and gain ratio to improve the performance of the internal threat detection model An appropriate mechanism (and function) is then used to combine the features to obtain an optimal set of features Adaptive rat optimization algorithm (AROA) optimizes DBN weight parameters to enhance performance F-measure, recall, accuracy,precision, and G-mean are calculated to measure Performance.
    Keywords: EHR; Insider threat detection; DBN; AROA and single optimized feature sets.
    DOI: 10.1504/IJSSE.2025.10059055
  • Risk integrated effort estimation of software projects: a comparative analysis of machine learning techniques   Order a copy of this article
    by Prerna Singal, Prabha Sharma, Charan Kumari 
    Abstract: Accurate software project effort estimation and risk management are the pillars of delivering an on-time, within budget and quality project. In our earlier research, a formula for computing risk integrated effort estimate by adding weighted cost of risk management for each project cost factor to the cost of initial effort estimate of the project has been proposed. In this research, neural network techniques: MLP, GRNN, CCNN and RBFNN; support vector regression, and adaptive neuro fuzzy inference system to obtain the integrated effort estimate as close as possible to the actual effort spent on the project have been applied. The techniques have been tested on two datasets: Agile and Waterfall datasets. GRNN gave the best results in terms of lowest values of accuracy measures: MAE, MMRE, MBRE, and MIBRE. This research also compares performance of GRNN with evolutionary algorithms ABC, PSO and GLBPSO, and the results for GRNN are comparable.
    Keywords: Agile projects; risk management; neural networks; CoCoMo II; support vector regression; risk exposure.
    DOI: 10.1504/IJSSE.2025.10059056
  • Vision Based Vehicle Tracking Network and Counting Using Deep Learning Model Systems   Order a copy of this article
    by Hemalakshmi K, A. Muthukumaravel 
    Abstract: Vehicle counting is a key component of the vehicle behaviourist approach and traffic incident detection for certain video surveillance systems. The accurate counting of vehicles in a variety of traffic conditions using deep learning algorithms and multi-object tracking systems is a popular area of research in the field of intelligent transportation. This research suggests a three-step vehicle identification, tracking, and counting process as a framework for video-based vehicle counting to estimate traffic flow. First, the Yolov3, Faster R-CNN, and SSD deep learning architectures are used to detect the vehicle, and the performances of each are compared. A modified DeepSORT algorithm tracks observed cars, and a picture shows their trajectory. In low-light and traffic conditions, a new vehicle counting system uses tracking data to count vehicles by type. Traffic figures are compared. The recommended method accurately recognises automobiles, tracks multiple objects, and detects with high precision and accuracy, according to experiments. This method meets real-time processing and vehicle counting needs. This study's method can count automobiles on difficult highways.
    Keywords: Vehicle detection; Vehicle Tracking Network; Vehicle counting; Deep learning; Traffic video; Yolov3; DeepSORT algorithm; Detection-Tracking-Counting.
    DOI: 10.1504/IJSSE.2025.10058951
  • Feed Forwarded Neural Network with Learning-Based Tuna Swarm Optimization (FFNN-LBTSO) For Semen Quality Prediction Systems   Order a copy of this article
    by C. Shanthini, S.Silvia Priscila 
    Abstract: Nowadays, some new diseases have come into existence due to lifestyle diseases. The major causes of the change in semen quality are environmental and lifestyle factors. One of the key tasks to assess the fertility potential of a male partner is semen analysis. Data-mining decision support systems can help identify this influence. Some seminal quality predictions were made. This research exploited unbalanced datasets with biased majority-class performance findings. Gradient descent local training is prone to local minima. Meta-heuristic algorithm optimization permits local and global solution finding. The paper develops a neural network model to predict semen quality. This paper improves Tuna Swarm Optimization using learning-based Feed-Forward Neural Networks (FFNN) (TSO). To balance normal and atypical cases, SMOTE data balancing was used. Overflow produces minority class instances until the balance is reached. FFNN-LBTSO was tested for predictive power. Steps include data source and pre-processing, SMOTE, FFNN classification, and LBTSO for classifier weights and bias optimisation. UCI sperm prediction. Sensitivity, specificity, G-mean, and accuracy measure experimentation. Fertility-optimal semen was detected. Comparing SVM and ANN classifier results.
    Keywords: Feed Forward Neural Network (FFNN); Tuna Swarm Optimization (TSO); Synthetic Minority Oversampling Technique (SMOTE); Learning-Based Tuna Swarm Optimization (LBTSO); Artificial Neural Network (ANN),.
    DOI: 10.1504/IJSSE.2025.10058952
  • Expansion of Situations Theory for Exploring Shared Awareness in Human-Intelligent Autonomous Systems   Order a copy of this article
    by Scott Humr, Anthony Canan, Mustafa Demir 
    Abstract: Intelligent Autonomous Systems (IAS) are part of a system of systems (SoS) that interact with other agents to accomplish tasks in complex environments. However, IAS-integrated SoS add additional layers of complexity based on their limited cognitive processes, specifically shared situation awareness that allows a team to respond to novel tasks. IAS's lack of shared situation awareness adversely influences team effectiveness in complex task environments, such as military command-and-control. A complementary approach of shared situation awareness, called situations theory, is beneficial for understanding the relationship between SoS's shared situation awareness and effectiveness. The current study elucidates a conceptual discussion on situations theory to investigate the development of an SoS’s shared situational awareness when humans team with IAS agents. To ground the discussion, the reviewed studies expanded situations theory within the context of SoS that result in three major conjectures that can be beneficial to the design and development of future SoSs.
    Keywords: Artificial Intelligence; Human-Machine Interaction; Intelligent Autonomous Systems; Shared Situational Awareness; Situations Theory.
    DOI: 10.1504/IJSSE.2025.10058953
  • An Intelligent Neural Question Answer Generation from Text Using Seq2se2 with Attention Mechanism System   Order a copy of this article
    by Sonam Soni, Praveen Kumar, Amal Saha 
    Abstract: Utilising data to its fullest extent is becoming increasingly important due to the rapid advancement of data over the past few years. Neural Question Answering is best for this much data. Question-Answer pairings have been laborious. Self-evaluation, education, and courses require questions and answers. Other AI businesses automate customer support inquiries. Designing such a system involves curating a database of consumer enquiries and live customer support representatives responses. For a new query, the system finds the best matched response in the curated dataset. Despite lacking common sense and reasoning skills, the Question Answering System is nonetheless widely used. We propose using reading comprehension strategies to automatically generate questions from sentences. The study used several methods to find the best Question Answer Pair algorithm. To boost accuracy, the model uses BERT, ELMo, and GloVe embedding methods. The model accurately reflects semantic and syntactic characteristics of the input text using these embedding strategies. Attention mechanisms help the model focus on key inputs and generate contextual predictions. Attention and embedding improve model accuracy.
    Keywords: Neural Question Answer; Word Embedding; Encoder-Decoder; AI firms; Sequence-to-Sequence; Question Answering System,.
    DOI: 10.1504/IJSSE.2025.10058954
  • SiamEEGNet: Few-Shot Learning for Electroencephalogram-based Biometric Recognition System   Order a copy of this article
    by Kriti Srivastava, Siddharth Sanghvi, Parag Vaid, Palash Rathod 
    Abstract: Authentication is verifying a user's identity when they enter a system. Due to their distinctiveness, biometric-based authentication solutions have started displacing conventional systems. This study suggests employing Electroencephalogram (EEG) or brain waves as a biometric modality since the level of uniqueness attained is higher. These noise-free ECG beats generate grayscale images using the proposed SiamEEGNet. A customised activation mechanism is also designed in this study to hasten the integration of the SiamEEGNet. The one that is suggested can extract characteristics using provided data. EEG signals are difficult to manually analyse and extract features from since they are highly dimensional and have a low signal-to-noise ratio. Because deep learning architectures have transformed end-to-end learning, this study suggests employing them. Convolutional Siamese Neural Networks are used by the suggested method, SiamEEGNet, to perform few-shot learning on a well-known and openly accessible dataset called EEG Motor Movement/Imagery Dataset (EEG- MMIDB), which consists of 106 subjects. The model is then quantitatively assessed using several criteria for person identification and authentication. SiamEEGNet competes favourably with current cutting-edge methods.
    Keywords: Biometric Recognition; Siamese Neural Networks; Convolutional Neural Networks; PhysioNet; Electroencephalogram; Spectrogram.
    DOI: 10.1504/IJSSE.2025.10058955
  • Prediction of Lockdown Via Opinion Mining from Tweets Using Machine Learning System   Order a copy of this article
    by Jayalakshmi V, M. Lakshmi 
    Abstract: Social networks are connected to the internet by architecture, facilitating instantaneous digital information sharing. Twitter users can share their thoughts and opinions. During the COVID-19 pandemic, polling and data helped choose the best health intervention. The COVID-19 pandemic showed that online forums and other electronic media spread disinformation more than the disease itself, threatening the world health system. Since December 2019, the new coronavirus has expanded significantly, infecting more Indians since March 2020.The Indian authorities locked down the country to limit citizen mobility and stop the infection. Social media outlets shaped user attitudes about the severe lockdown enforcement. We analyse user perception of lockdown enforcement by compiling lockdown 1.0, 2.0, and 3.0 tweets from many timelines. A Python tool trains and evaluates the deep learning framework using user feedback. Lockdown 3.0 and the government's policies are tested using new data after creation. Python analyses the forecast's performance in the three lockout scenarios. Simulation findings show that the proposed strategy outperforms existing classification algorithms.
    Keywords: Prediction; Lockdown; Opinion Mining; Tweets; Machine Learning; Indian Government; Python; COVID-19.
    DOI: 10.1504/IJSSE.2025.10059014
  • Application of Custom Ant Lion Optimization Convolutional Neural Networks for Liver Lesion Classification System   Order a copy of this article
    by A.Bathsheba Parimala, R.S. Shanmugasundaram 
    Abstract: In order to save a person's life, it's essential to categorize the lesions of liver in their early stages. The majority of scientists prefer classifying liver tumours using machine learning approaches. Recently, the use of computer-aided technology for this purpose has captured the interest of scientists. This paper classifies perceptual datasets using pre-trained network models and a lion-optimized CNN classifier. However, neural network learning can be improved, and deep learning-based neural networks and its applications are rarely studied. Additionally, the Custom Optimized Convolution Neural Network (CO-CNN) is suggested in this research as a very accurate method for classifying liver lesions. The de-noising steps in this suggested method include a median filter, the Random Forest (RF) method for extracting the liver, the Gray Level Run Length Matrix (GLRLM) method for extracting features, and the CO-CNN method for classification. This technique is tested on Python. Experimental results showed that the suggested approach exceeds existing approaches in accuracy, sensitivity, and specificity. It has 96% sensitivity and 97.77% accuracy.
    Keywords: Classification System; Liver lesion; RF; Custom Optimized Convolution Neural Network (CO-CNN); Sensitivity; Gray Level Run Length Matrix (GLRLM); Ant Lion Optimization (ALO); Lesion Classification.
    DOI: 10.1504/IJSSE.2025.10059811
  • An Efficient Data Sharing Scheme Using MultiTransaction Mode Consortium Blockchain for Smart Healthcare   Order a copy of this article
    by Deepak Kumar Sharma, Adarsh Kumar 
    Abstract: Electronic health records (EHRs) face security and transparency challenges, necessitating new standards. Blockchain technology holds promise for improving EHR security in smart healthcare systems. However, privacy and scalability issues persist, particularly in off-chain transaction management. We propose a method using a multi-transaction mode consortium blockchain (MTMCB) on Redis, enhancing EHR retrieval speed via an Adaptive Balanced Merkle (AB-M) tree. This approach combines binary tree efficiency with Merkle tree robustness. We employ a lattice-based ring signature scheme for secure patient EHR storage and retrieval. Our method significantly improves upload and download times compared to existing techniques, offering a potential solution to EHR access and security challenges.
    Keywords: Blockchain; Smart Healthcare; Electronic Health Records; Data retrieval; Optimized Redis cache.
    DOI: 10.1504/IJSSE.2025.10059329
  • Comprehensive study of Skin Cancer Detection and Classification from Skin Lesion Images   Order a copy of this article
    by Joseph George, Anne Kotteswara Roa 
    Abstract: Skin diseases are among the most prevalent and prevalent health issues that people face today. Skin disease (SC) is one among them and its discovery depends on the skin biopsy yields and the aptitude of the specialists yet the time utilization is more and the detection precision is poor. SC detection is difficult to perform at the beginning of the disease, which quickly spreads throughout the body and raises mortality rates. SC can be treated if it is discovered early. To order right and exact SC, the basic errand is SC identification and characterization that in light of the malignant growth illness elements like shape, size, variety, evenness and so forth. Numerous skin diseases share more similar characteristics, making it difficult to select important features from SC dataset images. Consequently, the SC diagnostic precision is improved by requiring a mechanized SC detection and order system in this manner the human master's shortage is taken care of. This surveys different DL strategies for SC identification and arrangement. The classification accuracy improves and computational complexity and time consumption are reduced when these DL methods are used.
    Keywords: Skin cancer; accuracy; deep learning; performance metrics; and data sets are the key words.
    DOI: 10.1504/IJSSE.2025.10059330
  • A Secure Blockchain based food supply chain management framework using hybrid IDEA algorithm   Order a copy of this article
    by Mohammed Musthafa Sheriff I, John Aravindhar D 
    Abstract: An agri based food supply chain oriented blockchain technology might provide lot of benefits like increased transparency, accountability and traceability. But there exist some challenges because of improper education, policies, frameworks and some technical aspects. Hence there occurs some need in developing a system which is more reliable that ensures the traceability, trustworthy and proper delivery mechanism in managing the Agri food supply chain. Therefore, a modified blockchain-based food supply chain is proposed based on Hybrid IDEA(International Data Encryption Algorithm) algorithm. It uses MDCNN (Multimodal Deep Convolutional Neural Networks) along with IDEA algorithm for ensuring the quality of the food Here in this work, the farmers, food processors and the various distributors will enter their data into the blockchain for generating the incontrovertible record needed for transaction. The transaction is encrypted using HIDEA algorithm which makes the authorization between the parties for accessing the data.
    Keywords: Multimodal Deep Convolutional Neural Networks; blockchain-based food supply chain; International Data Encryption Algorithm; transparency; accountability and traceability.
    DOI: 10.1504/IJSSE.2025.10059358
  • Covid-19: A Comprehensive Study of the Emergence, Impact, Diagnosis, Treatment, Challenges, and Future Perspectives   Order a copy of this article
    by Prabakaran G, Jayanthi K 
    Abstract: The COVID-19 pandemic caused by the SARS-CoV-2 virus has affected millions of people worldwide and has become a major global public health challenge. This review article provides a comprehensive overview of the current knowledge on COVID-19, including its epidemiology, pathophysiology, clinical manifestations, diagnosis, and treatment. The article focuses on the various diagnostic techniques used for COVID-19, including molecular, antigen, antibody, and imaging tests, and provides a comparison of their advantages and limitations. The review also discusses the various treatment options for COVID-19, including antiviral drugs, immunomodulators, and supportive care. Furthermore, the article examines the impact of COVID-19 on vulnerable populations, such as elderly individuals, immunocompromised patients, and individuals with underlying medical conditions. Finally, the review highlights the current challenges and future perspectives for COVID-19 research, including the development of effective vaccines and strategies for pandemic preparedness.
    Keywords: COVID-19; Epidemiology; Pathophysiology; Immunocompromised; Diagnosis; Treatment.
    DOI: 10.1504/IJSSE.2025.10060236
  • An Acceleration of Blockchain Mining by Parallel Process and Proof-of-Luck with Fair Share Technique System   Order a copy of this article
    by K. Lino Fathima Chinna Rani Vincent, M.P. Anuradha 
    Abstract: Blockchain plays a vital role in several applications; specifically, cryptocurrency transactions are performed through Blockchain applications. This technique stores network data securely via a distributed ledger. The transactions are part of Bitcoin mining. Miners in the network compute and verify these values. Blockchain networks using proof-of-work (PoW) consensus methods may have scalability issues as transaction volumes climb. The PoW mining mechanism cracks cryptographic riddles to authenticate more transactions and attach them to the Blockchain. When more miners join the network, transaction throughput and efficiency decrease, increasing authentication time and energy consumption. The proof-of-luck fair share parallel mining approach addresses PoW minings scalability issue. While retaining network security, this method enhances transactional validation quality and speed. Parallel mining uses several processors and processes to speed up Solo mining. The unique method boosts solo mining to TPS. Validators can mine various test case scenarios utilising the proposed methodologies in the testing environment. Experimental results show that the proposed technique can greatly increase Blockchain TPS. Experimental results show computer power's potential.
    Keywords: Parallel Mining; Scalability; Blockchain; Proof-of-Luck; TPS; Fair Share; Miners; and Transactions System.
    DOI: 10.1504/IJSSE.2025.10060238
  • Customized U-Net Model based Brain Tumor Segmentation in MRI Images and Ensemble based Tumor Classification Systems   Order a copy of this article
    by Devisivasankari P, Lavanya K 
    Abstract: Medical image processing requires autonomous brain tumour segmentation because early diagnosis can improve survival by treating brain cancers quickly. Brain tumours are manually classified by experts, which is time-consuming. Brain tumour (BT) diagnosis takes time and skill, hence radiologists must be skilled. As patient numbers have grown, so has data volume, making outdated methods expensive and inefficient. Many scholars have studied fast and accurate BT detection and classification algorithms. DL can locate BTs in medical photos using trained convolutional neural network (CNN) models. Brain tumour segmentation is easier with automatic segmentation, which is widespread. This work categorises and automates brain tumour segmentation using customised UNet model-based brain tumour segmentation (CUNet-BTS). Classification, preprocessing, segmentation, feature extraction, and fusion are modelled. Gaussian filtering enhances MRI pictures. Finally, an ensemble classification algorithm is suggested. For classification, this model combines the output scores of optimal DeepMaxout, DCNN, and RNN classifiers. The excellent training model Pelican Assisted Chimp Optimisation (PACO) Method can change classification model weights.
    Keywords: Magnetic Resonance Imaging; Convolutional Neural Network; Intersection-over-Union; Fully Convolutional Neural Networks; Recurrent Regression based Neural Network; Internet of Medical Things,.
    DOI: 10.1504/IJSSE.2025.10059671
  • Implementation of Octavia;s Openstack for Futuristic Cloud Computing by Optimization of Resources and Traffics
    by R.Nathiya Senthil Kumar, S.K. Piramu Preethika 
    Abstract: The Internet provides computing resources as a service on demand using cloud computing. In order to remedy this, locals have access to a range of open-source cloud operating systems, enabling them to use the cloud for useful reasons. Amazon Web Services (AWS), Microsoft Azure, Oracle Cloud, and OpenStack offer open-source cloud operating systems. Only OpenStack is free and has a substantial user base out of all of these. In private institutions or businesses, installation and use are free. Cloud load balancing is seen as a lifeline. In order to avoid website failures and other operational problems, it’s critical to balance traffic when websites face unexpected traffic spikes. This article discusses the concept and methods for automatic load balancing in OpenStack to help control bandwidth and stresses among virtual machines. The goal is to minimise traffic and maximise resources. The OpenStack networking feature LBaaS balances load as a service. An open-source LBaaS architecture for dynamic load-balancing clouds is presented here.
    Keywords: Cloud Computing; LBaaS; Load Balancer; Network Traffic; OpenStack Octavia; Octavia; bandwidth and stresses; Software-Defined Data Centers (SDDC); Software Defined Networking (SDN),.
    DOI: 10.1504/IJSSE.2025.10060239
  • Numerical Solution of Boundary Value Problems Using Quantum Computing System   Order a copy of this article
    by Ajanta Das, Debabrata Datta, Suman Rajest George, Varun Kumar Nomula, R. Dharani, K. Danesh 
    Abstract: Boundary value problems (BVPs) arise in various scientific and engineering disciplines, including physics, finance, and biology Classical computers may take too long to solve these issues numerically Quantum computing may solve this issue using quantum parallelism to calculate quicker than classical computers Recent quantum computer research shows that Quantum Fourier Transform (QFT) can efficiently solve Schr
    Keywords: Boundary value problems; Quantum computing; HHL algorithm; Quantum phase; estimation algorithm; Linear Solver; Quantum Fourier Transform.
    DOI: 10.1504/IJSSE.2025.10059826
  • Feature Interpreted Convolutional Neural Networks for Real Time Implementation of Respiratory Data   Order a copy of this article
    by Rampriya R, Suguna N, Sudhakar P 
    Abstract: Automatic detection of respiratory diseases is important to prevent any sudden death in patients. At present, respiratory diseases are detected by a physician who normally consumes more time to detect. In this work, the respiratory data from the persons are classified into either normal or abnormal using the proposed deep learning architecture. The proposed work consists of two subsequent phases namely training and testing. In training phase of the Respiratory Classification System (RCS), the respiratory data from both normal and both abnormal cases are individually data augmented in order to eliminate the overfitting issues in deep learning architecture. This data augmented respiratory data from both normal and abnormal case is used to construct Data Augmented Matrix (DAM) which is trained by the proposed Feature Interpreted Convolutional Neural Networks (FICNN) to produce the trained data. The proposed FICNN work obtained a 99.9% RDR with 0.05 ms as computational time.
    Keywords: FICNN; Over fitting; Data Augmentation; Deep Learning; Respiratory Classification System; RDR.
    DOI: 10.1504/IJSSE.2025.10060148
  • Pulmonary Carcinoma cells Classification using a Novel DCNN model Integrated with Cloud Computing Environment   Order a copy of this article
    by Sudha R, Umamaheswari K.M 
    Abstract: In this work, we presented a carcinoma cells classification of Non-Small Cell Lung Cancer (NSCLC) which is a more difficult challenge in CAD detection. So, a modified CADx is being investigated to alleviate radiologists' excessive work and the need for the following interpretations. We describe an approach for identifying and verifying different types of pulmonary carcinoma. In addition, a novel deep convolutional neural network (DCNN) and data were obtained via a cloud system for classifying lung nodule cell types in this study. As an integrated approach for CT images, the presented system includes a Cloud-based Lung Carcinoma cell Classifier. The suggested Cloud Based -on LCC first applied active snake model-based segmentation. A Novel DCNN for identifying distinct malignant cells of lung nodules is designed and verified using open sources Lung images. When compared to current strategies, our suggested technique reaches an accuracy of 96%, which is higher than other models.
    Keywords: Artificial Intelligence; Cloud Computing; CT Scans; Deep Neural Networks; Pulmonary Carcinoma.
    DOI: 10.1504/IJSSE.2025.10060240
  • Seeker Optimization Algorithm with Deep Learning based Feature Fusion Model for Tomato Plant Leaf Disease Detection   Order a copy of this article
    by Jayaprakash K, Balamurugan S.P 
    Abstract: The study focus on design and development of the Seeker Optimization Algorithm with Deep Learning based Feature Fusion Model for Tomato Plant Leaf Disease Detection (SOADLF-TPLDD) technique. The goal of the SOADLF-TPLDD technique is to apply DL technique for the segmentation and classification of plant disease. In the primary stage, the SOADLF-TPLDD technique uses U2Net model for background removal and UNetPP model for segmentation process. Besides, a feature fusion of two DL models takes place namely InceptionV3+EfficientNetB2. For disease detection and classification, Attention Convolutional Gated Recurrent Unit (ACGRU) model is applied. Furthermore, the SOA is used for optimal hyperparameter selection of the ACGRU model. Finally, the recommendation of pesticides for the detected plant diseases takes place using matrix factorization (MF) approach. The stimulation outcomes of the SOADLF-TPLDD method on benchmark dataset are validated and the outcomes represented the betterment of the SOADLF-TPLDD method over other existing techniques.
    Keywords: Tomato; Plant leaf diseases; Deep learning; Segmentation; Seeker Optimization Algorithm.
    DOI: 10.1504/IJSSE.2025.10060560
  • Database Systems under Rayleigh Fading Channels: MIMO-NOMA Based Performance Evaluation Modeling   Order a copy of this article
    by Bharathi C, Manjunatha Reddy H. S 
    Abstract: In recent years, Non-Orthogonal Multiple Access (NOMA) has emerged as a transformative technique, revolutionizing spectral efficiency and enabling massive connectivity in next-gen wireless communication. This groundbreaking research delves into MIMO NOMA systems’ power allocation strategies, prioritizing system throughput and user fairness. Our innovative approach leverages QPSK modulation in a comprehensive system model, meticulously simulating performance across various variables, including user distance and power differentials. Across varying bandwidths, our model showcases remarkable improvements in user experience, with a jaw-dropping 12 dB/Hz increase in spectral efficiency at a mere 1 dB SNR boost, coupled with a staggering 15x10-3 and 12x10-3 reduction in outage probabilities at 0.17 dB. Even in the challenging Rayleigh fading channel, the Bit Error Rate (BER) sees substantial reductions, reaffirming the prowess of our proposed methodology.
    Keywords: Bit Error Rate (BER); Rayleigh; Spectrum Efficiency; Outage probability; Multiple Input Multiple Output (MIMO); Database Systems; Non-Orthogonal Multiple Access (NOMA); Simultaneous Multi-User.
    DOI: 10.1504/IJSSE.2025.10060561
  • Improved Gray Wolf Optimisation Based Energy Efficient Spectral Sensing in Cognitive Radio Network   Order a copy of this article
    by Praveen Hipparge, Shivkumar Jawaligi 
    Abstract: In a 5G heterogeneous network, the Cognitive Radio Network (CRN) must choose amongst energy efficiency and spectrum sensing efficiency. The major goal of existing techniques is to apply convex optimization to solve the energy efficiency optimization problem in spectrum sensing. Real-time spectrum sensing, nevertheless, is a non-convex optimization issue. we propose a novel Improved Gray wolf optimization (IGWO) based approach to detect the enhanced energy usage spectrum holes to overcome the non-convex issues. The cuckoo search (CS) algorithm is used to balance the exploitation and exploration phases of GWO. The energy efficient spectrum can be detected with the factors such as power spectral density, transmission power, and sensing bandwidth. Experiments are demonstrated with the MATLAB simulator and compared the outcomes with the state-of-art works. Our proposed approach surpasses all the other works while considering the selection of energy efficient spectrum holes for the communication.
    Keywords: Spectrum; 5G network; cognitive radio network; optimization; and energy efficient.
    DOI: 10.1504/IJSSE.2025.10060744