Forthcoming and Online First Articles

International Journal of Sustainable Manufacturing

International Journal of Sustainable Manufacturing (IJSM)

Forthcoming articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Online First articles are published online here, before they appear in a journal issue. Online First articles are fully citeable, complete with a DOI. They can be cited, read, and downloaded. Online First articles are published as Open Access (OA) articles to make the latest research available as early as possible.

Open AccessArticles marked with this Open Access icon are Online First articles. They are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

Register for our alerting service, which notifies you by email when new issues are published online.

We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Sustainable Manufacturing (2 papers in press)

Regular Issues

  • Environmental sustainability benchmarking of roof type using life cycle assessment   Order a copy of this article
    by Asela K. Kulatunga, Raitha Peiris 
    Abstract: At present, alongside the gradual growth of the building construction industry, a massive number of materials have come to be used. Hence, there is a diversity in the impacts caused to the environment by these materials. Consequently, when the product life cycle of a building component (which is constructed by assembling these materials) is considered, its environmental performance is difficult to determine. Likewise, the environmental performance of the entire building component can be evaluated by categorising it into classified scenarios. Considering this need, a scenario-based life cycle assessment (LCA) is generally conducted on roofs, which are one of the main components of a building. One of the major differences between roofs that can be seen is the roof cladding material, and by changing the cladding material, the LCA was conducted repeatedly. The clay cladding roof is compared with commonly available alternatives, such as the PVC roof and the asbestos roof. Clay roof tiles, as a material, could be eco-friendly, but the results of this research study have proven that this is not always the case. The factors that affect this deviation from expectations are further analysed in this research. In addition, a guide is provided on how to recover the depleted eco-sustainability that existed previously in the clay roof tile.
    Keywords: life cycle assessment; environmental sustainability; sustainable manufacturing; roofing materials.

  • Comparison of energy consumption and environmental emissions of diesel engine after-treatment devices based on life cycle assessment   Order a copy of this article
    by XiaoLei Mei, Tao Li, ShiTong Peng, HongChao Zhang 
    Abstract: Now, after-treatment devices have been proven to affect reducing emissions. However, manufacturing after-treatment devices also produce pollution emissions. This study used a life cycle assessment (LCA) method to evaluate three diesel after-treatment devices: diesel oxidation catalyst (DOC) converter, diesel particulate filter (DPF) and selective catalytic reduction (SCR) converter. The data results show that after-treatment devices have different impacts on the environment, and SCR has more environmental impact. The ozone depletion potential (ODP) pollution is the largest and cannot be ignored. The use of after-treatment devices has great emission reduction benefits, and the quantified reduction rate of environmental indicators exceeds 96%, except for global warming potential (GWP, about 15.26%). An engine equipped with after-treatment devices has some environmental benefits, which are reflected in the five indicators of GWP, AP, EP, POCP and RI, but the use of urea in SCR devices will increase the impact of ODP.
    Keywords: engine after-treatment devices; life cycle assessment; catalytic converter; environmental impact.