Forthcoming articles

International Journal of Sustainable Manufacturing

International Journal of Sustainable Manufacturing (IJSM)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Sustainable Manufacturing (2 papers in press)

Regular Issues

  • Sustainability analysis of Ti-6Al-4V machining using statistical design methods: effects of cooling techniques and machining strategies   Order a copy of this article
    by Hussien Hegab, Ali Hosseini, Ibrahim Deiab, Hossam Kishawy 
    Abstract: Minimising energy consumption and making machining processes more environmentally friendly are the two essential requirements of sustainable machining. As a result, development of technologically advanced yet efficient machining processes with minimum energy consumption and least toxic waste is an evolving field of research and study. In this paper, the effects of several lubrication techniques as well as different machining strategies (classic and hybrid), when machining Ti-6Al-4V, have been studied. Three different factors, namely energy consumption, surface quality, and flank wear, have been measured to evaluate the effectiveness of different lubrication techniques and machining strategies. Analysis of variance (ANOVA) has also been employed to analyse the influence of process parameters on the above-mentioned factors to determine the optimum levels of machining parameters and verify the experimental results. the accuracy of the model has finally been verified using the ANOVA results.
    Keywords: sustainability; Ti-6Al-4V; minimum quantity lubrication; hybrid machining.

  • Disassembly system design and analysis with environmental and economic parts selection using life cycle inventory database by input-output tables   Order a copy of this article
    by Tetsuo Yamada, Yusuke Suzuki, Yuki Kinoshita, Tadayuki Masui, Norihiro Itsubo, Masato Inoue 
    Abstract: To prevent material starvation and global warming caused by manufacturing, disassembly systems for End-of-Life (EOL) products should be environmentally and economically designed to promote a closed-loop supply chain for assembly products. With parts selection in the disassembly systems, parts/materials with higher CO2 volumes should be recycled for environmental reasons. On the other hand, parts/materials with higher profit, which is the difference between the revenue of recovered materials and disassembly costs, should be disassembled for economic reasons. A disassembly system design considering not only the environmental loads but also the recovered parts/materials are proposed by using a Product Lifecycle Management (PLM) tool. However, from a technical and financial standpoint, it is not easy for the disassembly factory sites to create the 3D-CAD models and obtain the environmental information using the PLM tool. This paper proposes a disassembly system design with the environmental and economic parts selection using a life cycle inventory database by input-output tables.
    Keywords: CO2 emissions; reuse and recycling; product recovery values; environmentally conscious manufacturing; sustainable manufacturing; closed-loop supply chains.