Title: Adaptive fuzzy clustering-based texture analysis for classifying liver cancer in abdominal CT images

Authors: Amita Das; Priti Das; S.S. Panda; Sukanta Sabut

Addresses: Institute of Technical Education and Research, Department of Electronics and Communication Engineering, Siksha 'O' Anusandhan University, Odisha, 751030, India ' SCB Medical College and Hospital, Odisha, 753007, India ' Department of Surgical Oncology, IMS and SUM Hospital, Siksha'O'Anusandhan University, Odisha, 751003, India ' Department of Electronics Engineering, DY Patil Ramrao Adik Institute of Technology, Nerul, Navi Mumbai, 400706, India

Abstract: Segmentation of diseased liver in abdominal CT images is a challenging task due to variations in shapes, tissue similarity between adjoining organs. We propose an automatic detection technique that integrates the fuzzy clustering with adaptive thresholding for segmenting the liver and finding the tumour region in abdominal CT images. Various features like texture features, morphological features and statistical features have been extracted from the output images and used as input to the neural network classifier to classify the malignant and benign tumour of the liver. The method was evaluated in a series of 45 images collected from medical image computing and computer assisted intervention (MICCAI) database and the efficiency is tested in terms of sensitivity, specificity, and accuracy. We obtained the accuracy of 97.82%, 95.74% in BPN and LVQ and higher accuracy of 98.82% is achieved with PNN in detecting tumours which are comparable to published results.

Keywords: CT image; liver; tumour; segmentation; ROI; region-of-interest; neural network classifier.

DOI: 10.1504/IJCBDD.2018.094629

International Journal of Computational Biology and Drug Design, 2018 Vol.11 No.3, pp.192 - 208

Received: 30 May 2017
Accepted: 18 Aug 2017

Published online: 31 Aug 2018 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article