Title: Air quality index forecasting using artificial neural networks - a case study on Delhi

Authors: S. Sankar Ganesh; P. Arulmozhivarman; V.S.N. Rao Tatavarti

Addresses: School of Electronics Engineering, VIT University, Vellore, 632014, India ' School of Electrical Engineering, VIT University, Vellore, 632014, India ' GVP-SIRC, GVP College of Engineering, Visakhapatnam, 530048, India

Abstract: Air is the most vital constituent for the sustenance of life on earth. Air pollution is the major problem we have been facing. It is important to address this issue to lead a healthy life. Forecasting of air quality will contribute to a healthy society. In this paper, artificial neural network (ANN) predictors trained with conjugate gradient descent have been implemented to forecast air quality index (AQI) in a particular area of interest. Several neural network models such as multilayer perceptron (MLP), Elman, radial basis function and NARX were applied. In these neural network models, four major pollutant concentrations including NO2, CO, O3 and PM10 for the year 2014 to 2016 in Delhi (India) were used to train each predictor. It can be concluded that, among all these models, radial basis function exhibited more accuracy in terms of measures of quality with mean absolute error (MAE) = 7.33, mean absolute percent error (MAPE) = 4.05%, correlation coefficient (R) = 0.993, root mean square error (RMSE) = 9.69 and index of agreement (IA) = 0.99.

Keywords: air quality index; AQI; artificial neural networks; ANN; conjugate gradient descent; forecasting; radial basis function; RBF.

DOI: 10.1504/IJEWM.2018.094105

International Journal of Environment and Waste Management, 2018 Vol.22 No.1/2/3/4, pp.4 - 23

Received: 26 Apr 2017
Accepted: 21 Sep 2017

Published online: 16 Aug 2018 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article