You can view the full text of this article for free using the link below.

Title: Neural prediction of concrete compressive strength

Authors: Saha Dauji

Addresses: Nuclear Recycle Board, Bhabha Atomic Research Centre, Anushaktinagar, Mumbai 400094, India

Abstract: In the past, a few researchers predicted the compressive strength of concrete from its ingredients by employing artificial neural network (ANN). Evaluation of the models with different performance metrics, such as correlation coefficient and errors of estimation, indicated that there was scope for improvement in the prediction performance of ANN. In this paper development of prediction models has been carried out for superior performance with two concepts: single ANN and modular ANN. Experimental data from literature have been utilised for the study. Better overall performance of the developed ANN models than reported in the literature was ascertained by higher correlation, less root mean square error and mean absolute error. The performance of the modular ANN concept was superior to that of single ANN concept for the present application.

Keywords: compressive strength; concrete; prediction; artificial neural networks; modular ANN.

DOI: 10.1504/IJMSI.2018.093884

International Journal of Materials and Structural Integrity, 2018 Vol.12 No.1/2/3, pp.17 - 35

Available online: 24 Jul 2018 *

Full-text access for editors Access for subscribers Free access Comment on this article