Title: Ensemble classification approach for screening of obstructive sleep apnoea using ECG

Authors: B. Banu Rekha; A. Kandaswamy; R.M.P.L. Ramanathan

Addresses: Department of Biomedical Engineering, PSG College of Technology, Coimbatore 641004, Tamil Nadu, India ' Center for Industrial Research and development, PSG College of Technology, Coimbatore 641004, Tamil Nadu, India ' Department of Pulmonolgy, PSG Hospitals, Coimbatore 641004, Tamil Nadu, India

Abstract: Sleep is essential for healthy human life. Obstructive Sleep Apnoea (OSA) is a commonly occurring sleep breathing disorder and manifests itself as pauses in nocturnal breathing. Screening is traditionally done at sleep labs, but is considered as labour intensive and costly procedure. Hence, reduced complexity methods for screening of OSA are necessary. Heart Rate Variability (HRV) is widely accepted as a characteristic of OSA. This paper proposes an ensemble learning based classifier for the detection of OSA through HRV. Sleep signals were acquired from benchmarked databases such as Apnoea-ECG and UCCD. Several linear and non-linear features that includes time domain, frequency domain and statistical features are utilised. Dimensionality reduction was done for deriving the optimal feature set. Ten-fold cross validation test was performed and a maximum accuracy of 94% was achieved in detecting OSA occurrences. The results of the proposed study are comparable to the gold standard of OSA screening.

Keywords: obstructive sleep apnoea; screening; electrocardiogram; heart rate variability; ensemble classifier; dimensionality reduction; random forests.

DOI: 10.1504/IJBET.2018.093102

International Journal of Biomedical Engineering and Technology, 2018 Vol.27 No.1/2, pp.139 - 150

Available online: 02 Jul 2018 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article