Title: Speckle noise reduction for 3D ultrasound images by optimum threshold parameter estimation of bi-dimensional empirical mode decomposition using Fisher discriminant analysis

Authors: Rafid Mostafiz; Mohammad Motiur Rahman; P.K. Mithun Kumar; Mohammad Ashraful Islam

Addresses: Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh ' Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh ' Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh ' Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh

Abstract: This paper presents an approach to speckle noise reduction for 3D ultrasound images using bi-dimensional empirical mode decomposition (BEMD). 3D ultrasound is a popular diagnostic system for assessing the progression of diseases for its diverse benefits and application. Speckle noise often obscures the fine details and degrades the spatial resolution and, contrast quality that makes the interpretation of ultrasound image more difficult. The proposed method estimates an optimum threshold value of intrinsic mode functions (IMFs) using Fisher discriminant analysis (FDA) for reducing the speckles in 3D volume of ultrasound images. FDA has applied on 2D IMFs, then explored and extended to 3D. The 3D volume rendering is performed on the basis of integrating 2D slice images that provide strong speckle reduction and edge preservation. The experiment result has compared with the several other state-of-the-art threshold methods. The proposed method is also good in edge preservation and contrast resolution.

Keywords: EMD; empirical mode decomposition; BEMD; bi-dimensional empirical mode decomposition; IMF; intrinsic mode function; ultrasound imaging; 3D volume visualisation; FDA; Fisher discriminant analysis; speckle noise; optimum threshold.

DOI: 10.1504/IJSISE.2018.091886

International Journal of Signal and Imaging Systems Engineering, 2018 Vol.11 No.2, pp.93 - 101

Received: 23 Aug 2017
Accepted: 18 Dec 2017

Published online: 20 May 2018 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article