Title: A new approach to supporting runtime decision making in mobile OLAP

Authors: Djenni Rezoug Nachida; Nader Fahima; Boumahdi Fatima

Addresses: National Computer Science Engineering School, ESI, Oued Smar, Algiers, Algeria ' National Computer Science Engineering School, ESI, Oued Smar, Algiers, Algeria ' National Computer Science Engineering School, ESI, Oued Smar, Algiers, Algeria

Abstract: Mobile online analyses processing (OLAP) system offers to decision makers the real-time and relevant analyses anywhere and at anytime. In order, to generate them, a mobile OLAP should not only use user preferences, but also exploits information about contextual situation (meeting, business travel, office work, or home work) where analyses are done. For instance, when generating analyses, a mobile OLAP could take into account whether the decision maker's contextual situation is a business travel (uses a device with limited resources) or an office work (uses a device with high capacities). For this end, we investigate in this paper to propose a mobile context-aware recommender system (MCARS for short) based on both user preference and context. But, unfortunately, the limited resources in the MCARS make reducing a context acquisition a necessary need. To achieve this goal, our system proposes: 1) a learned approach which generates relevant contextual factors (contextual factors shown to be important); 2) deduces a relationship between a context and user's preferences (called contextual preferences); 3) and finally recommends a set of analysis based on user's contextual preferences.

Keywords: relevant context; context-aware recommender system; CARS; K2; knowledge-based recommender system.

DOI: 10.1504/IJICT.2018.090554

International Journal of Information and Communication Technology, 2018 Vol.13 No.2, pp.149 - 175

Available online: 14 Mar 2018 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article