Title: PageRank influence analysis of protein-protein association networks in the malaria parasite Plasmodium falciparum
Authors: Xinran Yu; Timothy G. Lilburn; Hong Cai; Jianying Gu; Turgay Korkmaz; Yufeng Wang
Addresses: Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA ' Novozymes NA Inc., Durham, NC 27709, USA ' Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA ' Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA ' Department of Computer Science University of Texas at San Antonio San Antonio, TX 78249, USA ' Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
Abstract: Malaria has caused millions of deaths over the years and it is still a major scourge in its endemic regions. Resistance to even the most recently developed effective treatments has emerged. A deeper understanding of parasite biology and host-parasite interactions will enable new, robust measures against the malaria parasite. In this paper, we developed a novel PageRank-based network analysis approach to identify proteins that are potentially influential in protein-protein association networks in Plasmodium falciparum. The proteins that were predicted to be most influential are involved in transcriptional regulation, signalling, proteolysis, and heat shock response. They are associated with proteins that may play a role in fundamental processes that range from genetic information processing, metabolism, transport, development, to virulence to the host. Functional characterisation of these proteins may open venues for novel therapeutics for effective malaria eradication.
Keywords: malaria; plasmodium; PageRank; systems biology; network.
DOI: 10.1504/IJCBDD.2017.083878
International Journal of Computational Biology and Drug Design, 2017 Vol.10 No.2, pp.137 - 156
Received: 02 Aug 2016
Accepted: 19 Sep 2016
Published online: 25 Apr 2017 *