Title: Magnetic nanocomposites based on mesoporous silica for biomedical applications

Authors: Z. Vargas-Osorio; Y. Piñeiro; C. Vázquez-Vázquez; C. Rodríguez-Abreu; M.A. Álvarez-Pérez; M.A. López-Quintela; J. Rivas

Addresses: Facultade de Física, Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain; Laboratorio de Bioingeniería de Tejidos, DEPeI-Facultad de Odontología, UNAM, México D.F. ' Facultade de Física, Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain ' Facultade de Química, Departamento de Química Física, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain ' International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga s/n, Braga, 4715, Portugal ' Laboratorio de Bioingeniería de Tejidos, DEPeI-Facultad de Odontología, UNAM, México D.F. ' Facultade de Química, Departamento de Química Física, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain ' Facultade de Física, Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain

Abstract: In the present work we report the synthesis procedure of magnetic mesoporous SBA-15 silica materials with controlled morphology as potential composites for biomedical applications, mainly as scaffolds for bone tissue engineering. Different procedures and synthetic parameters are varied to control the physico-chemical, textural and magnetic properties of these materials. Our results show that magnetic mesoporous silica presents two-dimensional hexagonal symmetry with the presence of mesoporous cylindrical geometries, open at both ends, with magnetite nanoparticles in the channels as shown by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) micrographs. Determined by the Brunauer-Emmett-Teller (BET) method, these materials show a surface area above 150 m2/g, which assures a loading capacity higher than conventional ceramics. The presence of crystalline magnetite is corroborated by X-ray diffraction (XRD). The magnetisation cycles show no hysteresis or coercive forces, evidencing their superparamagnetic (SPM) behaviour, which is highly desirable for biomedical applications to avoid magnetic agglomeration of particles.

Keywords: magnetic mesoporous silica; magnetic nanocomposites; functionalised SBA-15/Fe3O4; mesoporous SBA-15; magnetite nanoparticles; PAA; PEI; nanotechnology; biomedical applications; scaffolds; bone tissue engineering; loading capacity; superparamagnetic behaviour; SPM; Fe3O4; ferric oxide; iron oxide.

DOI: 10.1504/IJNT.2016.079668

International Journal of Nanotechnology, 2016 Vol.13 No.8/9, pp.648 - 658

Published online: 07 Oct 2016 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article