Title: Nonlinear model for magnetic nanoparticle-based hyperthermia

Authors: Mohamed M. Sulman; David F. Miller; Gregory Kozlowski

Addresses: Department of Mathematics and Statistics, Wright State University, Dayton, OH, 45435, USA ' Department of Mathematics and Statistics, Wright State University, Dayton, OH, 45435, USA ' Department of Physics, Wright State University, Dayton, OH, 45435, USA

Abstract: In this work, we use Pennes' nonlinear model to estimate the temperature distribution generated by electromagnetically excited nanoparticles and metabolic processes within a spherical tumour surrounded by a sphere of healthy tissue. We describe an efficient numerical approach to analyse the proposed nonlinear model for the heat transfer. Numerical results for the nonlinear bio-heat transfer model with the temperature dependent blood perfusion are presented, and compared with those of the traditional Pennes linear model with constant perfusion rate. We also investigate the dependence of tissue temperature and nanoparticle heat production on the volume fraction of nanoparticles.

Keywords: Pennes; nonlinear modelling; spherical tumours; hyperthermia; magnetic nanoparticles; MNPs; nonlinear perfusion; nanotechnology; temperature distribution; heat transfer; blood perfusion; tissue temperature; nanoparticle heat production; volume fraction.

DOI: 10.1504/IJMMNO.2015.071871

International Journal of Mathematical Modelling and Numerical Optimisation, 2015 Vol.6 No.3, pp.223 - 234

Available online: 21 Sep 2015

Full-text access for editors Access for subscribers Purchase this article Comment on this article